首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   7篇
化学   7篇
物理学   4篇
  2022年   1篇
  2019年   1篇
  2016年   2篇
  2015年   4篇
  2010年   1篇
  2002年   1篇
  1993年   1篇
排序方式: 共有11条查询结果,搜索用时 125 毫秒
1.
聚甲氧基二甲醚(PODE)是一种有潜力的柴油替代燃料,目前针对PODE的研究更多集中在发动机台架试验,相应的基础喷雾燃烧研究较少,制约了其在动力装置中高效清洁燃烧性能的提升。羟基(OH)性质活泼,大量存在的区域通常认为是高温反应区域。利用羟基光谱可以获得火焰结构、燃烧反应位置以及热释放速率等重要参数。环境氧浓度对火焰结构有很大影响,也是控制燃烧反应速率和污染物排放的重要参数。因此,在一台光学定容燃烧弹上,首先利用羟基的自发光光谱测量,研究了宽环境氧浓度变化(15%~80%)对PODE喷雾火焰浮起长度的影响,进一步利用阿贝尔逆变换方法将羟基自发光光谱强度由积分值反演为点位值,研究了富氧条件下(40%~80%)氧浓度变化对PODE喷雾羟基分布的影响。研究结果表明:环境氧浓度由15%增至40%,PODE火焰浮起长度迅速缩短;氧浓度进一步增加至80%,火焰浮起长度下降趋势逐渐变缓,直至基本不变;相同氧气浓度下PODE火焰浮起长度明显小于柴油。反演后的羟基光谱分布特征表面,富氧条件下PODE羟基光谱的高光强区域主要集中于喷雾边缘扩散火焰薄层中,同时,局部温度的显著提升使得羟基光谱强度在预混反应区下游附近达到最大;羟基光谱高光强区域随氧气浓度增加逐渐向火焰中上游区域迁移,并且其分布表现为轴向上更短,径向上更窄;在火焰达到准稳态时,相较40%氧气浓度条件,60%和80%氧气浓度下的羟基光谱强度在火焰中下游明显减弱,表明高的环境氧浓度下喷雾上游的燃油高浓度区域更快的参与到剧烈的燃烧反应中。  相似文献   
2.
大分子碳氢燃料的低温化学反应及两阶段点火特性会显著影响火焰的分区及燃烧情况。本文采用数值模拟的方法探究了正庚烷/空气预混混合气在RATS燃具上的湍流火焰传播,与试验结果具有一致性。模拟使用的是44种物质,112步的正庚烷简化动力学机理。使用Open FOAM的reacting Foam求解器建立了简化模拟流道及出口的三维模型,模拟了在大气环境下,初始反应温度450–700 K、入口速度6 m·s~(-1)与10 m·s~(-1)、焰前流动滞留时间100 ms及60 ms、当量比φ=0.6的正庚烷/空气混合气湍流火焰燃烧情况。结果发现,标准化湍流燃烧速度与混合气初始温度以及流动滞留时间有关。在低温点火阶段,正庚烷氧化程度受到初始温度与速度的影响,燃料分解并在预热区中产生大量中间物质如CH_2O,继而会影响湍流火焰燃烧速度。随着初始反应温度的升高,湍流燃烧火焰逐渐由化学反应冻结区过渡到低温点火区;温度超过一定数值后,燃料不再发生低温反应,此时燃烧位于高温点火区域。  相似文献   
3.
激光诱导炽光(LII)法是一种用于测量火焰中碳烟体积分数的光学测试方法. 本文介绍了LII 的基本原理以及LII 实现定量测量的常见标定方法, 建立了一套基于双色法-激光诱导炽光法(2C-LII)的用于柴油机缸内燃烧过程碳烟体积分数定量测量的测试系统, 该测试系统采用双成像原理, 可以实现多点标定和全视场范围内的碳烟体积分数测量. 在一台工作在1200 r·min-1、喷油量21 mg的光学单缸柴油机上, 研究了60、100 和140MPa三个不同喷油压力下, 缸内燃烧过程碳烟的分布情况, 结果表明, 碳烟自发光出现在燃烧放热率峰值之后, 且随着喷油压力提高, 碳烟发光持续期缩短, 碳烟发光强度降低. 测试区域内火焰中的碳烟体积分数范围约为0-50×10-6. 不同喷油压力下, 碳烟生成初期、碳烟峰值和碳烟氧化三个阶段内平均碳烟体积分数的范围分别是: 5×10-6-9×10-6, 15×10-6-20×10-6和14×10-6-16×10-6. 喷油压力提高后火焰中的碳烟分布区域面积增大, 平均碳烟体积分数减小, 碳烟体积分数的空间分布趋于均匀.  相似文献   
4.
为研究不同含氧燃料与柴油掺混后碳烟降低机理, 本文在自行设计的燃烧器上构建部分预混层流火焰, 采用甲苯和正庚烷混合物(T20, 20%(体积分数)甲苯、80%正庚烷)作为柴油替代物,并分别添加甲醇、乙醇、正丁醇、丁酸甲酯和2,5-二甲基呋喃(DMF), 且保证混合燃料的含氧量均为4%. 进而应用激光诱导荧光法和激光诱导炽光法分别测量不同混合燃料的火焰中多环芳香烃(PAHs)的荧光光谱和碳烟浓度. 结果表明: 通过PAHs的荧光光谱可测量不同燃料火焰中PAHs的生成和增长历程. 四环芳香烃(A4)的生成氧化规律和碳烟基本一致, 说明通过分析A4变化可以预测碳烟变化. 添加含氧燃料后, T20燃料中甲苯含量降低是导致PAHs的荧光光谱强度降低和碳烟生成量减少的主要原因; 同时不同含氧燃料本身对多环芳香烃的生成贡献能力也是影响PAHs的荧光强度和碳烟生成的重要原因. 含氧量相当时, 掺混正丁醇后PAHs的荧光光谱强度和碳烟浓度比添加甲醇、乙醇、丁酸甲酯和DMF这四种含氧燃料的更低. 因此从含氧燃料结构来讲, 正丁醇掺混入T20燃料中降低PAHs和碳烟作用最显著.  相似文献   
5.
张帆  尧命发 《物理化学学报》2016,32(8):1941-1949
采用三维直接数值模拟方法研究了一个类似于部分预混燃烧(PPC)发动机条件下高辛烷值燃料PRF70的着火过程。文章采用了简化的PRF化学动力学机理,包含33个组分和38步基元反应。计算中根据发动机的几何尺寸和真实运行工况加入了气缸内压缩/膨胀的效果,并考虑了燃料的两次喷射,其中第一次喷射形成了较均匀的混合气,第二次燃料喷射增加了混合物分层。研究发现,PPC的燃烧过程非常复杂,是均质压燃、预混燃烧和扩散燃烧三种主要燃烧模式的结合。在两次燃料喷射之间的区域为近化学计量比燃烧,是氮氧化物的生成区;而在化学计量比(φ)大于2的区域,混合不充分聚集了大量未燃碳氢和CO。文章使用Marching cube算法捕捉了三维火焰锋面随时间的变化。最后,使用反应锋面上高斯曲率(kg)与平均曲率(km)的联合概率密度函数(PDF)以及平均曲率随时间变化的概率密度函数,揭示了球形火焰锋面和马鞍形火焰锋面的存在,前者占主要地位,并且随着燃烧的进行,负曲率增加,主要是因为中心的燃料浓区在逐渐消耗。  相似文献   
6.
等离子体法由二甲醚合成柴油添加剂   总被引:5,自引:0,他引:5  
二甲氧基乙烷;制备;等离子体法由二甲醚合成柴油添加剂  相似文献   
7.
本文提出了一个新的包括计算碳烟和NO_x生成历程及排放浓度的准维多区燃烧模型.该模型以二维气相喷注计算为基础,考虑到中小缸径直喷式柴油机的特点,推导了壁面喷注过程空气卷吸率方程;改进了喷雾区和空气区散热量的计算公式;建立了柴油机碳烟生成与氧化子模型.模型计算结果与实际柴油机实验结果相当吻合,对发动机变工况、变参数具有较好的适应能力.  相似文献   
8.
双燃料压燃(RCCI)是一种很有前景的发动机新型燃烧方式,能在小负荷到中高负荷范围内实现发动机高效清洁燃烧,为了将RCCI拓展到更高负荷,需要对其缸内燃油分层和燃烧过程开展更深入研究。本文在一台双燃料光学发动机上采用燃油-示踪剂平面激光诱导荧光法(PLIF),对RCCI着火前缸内燃油分层进行定量测量,选用甲苯作为示踪剂,利用266 nm脉冲激光激发甲苯荧光,发动机转速1200 r·min-1,平均指示压力6.9×105 Pa,气道喷射异辛烷,缸内在上止点前10°喷射正庚烷。采用燃油-气体绝热混合假设,对PLIF测量结果进行温度不均匀性修正,以上止点后5°曲轴转角下的测量结果为例,不修正相比修正测试区域内的最大当量比高估15%。根据实验结果,利用Chemkin软件分析了活性、浓度和温度分层对燃烧滞燃期的影响,结果显示燃料活性分层和浓度分层共同决定RCCI的着火滞燃期,其中活性分层影响要大于浓度分层,而温度分层对着火滞燃期影响很小。RCCI燃烧过程自发光的高速成像结果表明,着火过程首先出现在燃烧室边缘的高活性区域,随后火焰向燃烧室中心处的低活性区域发展,碳烟辐射光图像显示碳烟主要形成于燃烧室边缘的高活性区域。  相似文献   
9.
多次喷射对重型柴油机影响的试验研究   总被引:2,自引:0,他引:2  
本文在一台电控共轨柴油机上进行了多次喷射及多次喷射和EGR结合对重型柴油机影响的试验研究。EGR为基于VGT的高压冷却EGR系统。研究了不同喷射策略下喷射参数对柴油机性能和排放的影响。研究了EGR和多次喷射结合降低柴油机排放的效果;通过调整EGR率,将NO_x控制在2.0 g/(kW·h),研究喷射参数和EGR对柴油机的影响。研究结果表明,预喷射可以在小负荷时改善柴油机的NO_x、CO和比油耗,但在大负荷时没有明显的影响;两次预喷射可以促进油气混合;后喷射可以促进油气混合,提高碳烟的氧化速度,因而可以明显改善柴油机的烟度和CO;优化的喷射参数结合EGR可以显著降低NO_x和烟度。  相似文献   
10.
为了更好地区分测量小分子芳香烃,利用一台Nd∶YAG激光器提供能量为0.085 J·cm-2、波长为266 nm的入射光。针对苯、甲苯、萘、菲、蒽、芘和屈不同环数的芳香烃,使用激光诱导荧光法研究了单一芳香烃及不同芳香烃混合物的荧光光谱。结果表明,芳香烃的苯环数是荧光发射光谱的主要决定因素;相同苯环数不同结构的芳香烃对荧光光谱范围基本没有影响;由于266 nm波长的吸收效率差异,导致相同环数的芳香烃的荧光光强存在差异;而且吸收效率相近且浓度相同时,环数越大,荧光光强越强。随着芳香烃环数的增加,荧光光谱波段和峰值都出现从紫外波段向可见光波段红移的现象,同时吸收效率相近时,荧光光谱范围变宽;一环至四环芳香烃的较好的荧光光谱区分范围分别为275~320,320~375,375~425和425~556 nm。针对不同芳香烃混合物研究表明,由于辐射能量传递机制导致混合物中有3环或4环芳香烃存在时,紫外波段的光被损失,所以1环或2环芳香烃混入混合物后,混合物中的1环或2环荧光光谱不能被检测到,但荧光光谱强度增大;当混合物中只包含3环和4环芳香烃时,荧光发射光谱具有两种芳香烃的特点;当混合物中存在3环和4环芳香烃时,荧光发射光谱和各自的浓度相关,从而可以一定程度区分不同环数物质。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号