首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2022年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
CO是碳氢燃料不完全燃烧的重要产物,常常被作为反应燃烧效率的标志物,燃烧场CO组分浓度的精确测量对提高燃烧效率、减少污染物排放具有重要意义。离轴积分腔输出光谱(OA-ICOS)是一种利用物质对激光的特异性吸收,实现对该物质分析和测量的技术,具有非接触、稳定和高灵敏度等优点。针对燃烧场CO浓度低,背景信号干扰强等特点,采用分布反馈式(DFB)激光器搭建基于离轴积分腔输出光谱的CO浓度测量系统,通过直接吸收光谱的测量方法实现对高温燃烧场CO浓度测量。利用仿真模拟的方法,在所用激光器中心波长的附近选出了常温下谱线强度较为突出,高温下不受其他燃烧产物干扰的第一泛频带R(10)吸收谱线。通过固定光程池对比吸光度的方法标定了OA-ICOS系统的有效光程;通过比较不同扫描频率下吸收谱线的信噪比和线型拟合残差标准差,得到最佳波长扫描频率;通过测量不同浓度CO混合气体的吸收信号分析了系统误差。探究了不同燃烧情况下CH4/Air预混平焰炉上CO的产生情况,根据燃烧场测量区域温度分布情况描述了温度分布不确定度对CO测量结果的影响。当量比为1.0时,在10 ms的测量时间分辨率下,噪声等效灵敏度(NEAS)为3.67×10-7 cm-1·Hz-1,系统测量误差小于4.5%,燃烧场测量区域温度分布不确定度带来的CO浓度测量不确定度为5.6%。改变当量比从0.8到1.2时,得到平均温度变化范围为1 275~1 368 K,CO浓度变化范围为0.041%~1.57%。研究发现随着当量比的提高,燃烧场温度和CO浓度均呈上升趋势。实验结果表明将离轴积分腔输出光谱技术应用于燃烧场气体参数测量具有信噪比高、检测灵敏度高等优点,可以实现痕量气体组分浓度的精确测量。  相似文献   
2.
发动机是飞行器动力系统的核心组件,发动机流场的动态监测可以掌握发动机内部流场的燃烧情况,对于飞行器状态监测和性能评估具有重要意义。拥有先进的诊断技术是发展发动机技术的基础,也是研制新型航空航天飞行器的必要条件之一。激光吸收光谱技术可以实现燃烧场气体参数的测量,在发动机严苛的流场环境中,吸收光谱波长调制技术(WMS)可以提高信噪比。但基于WMS解算积分吸光度和温度、浓度二维分布的方法都是以模拟退火算法(SA)为核心,因此存在执行时间较长的问题。根据随时间演化的流场光谱参数、光线分布为固定信息这一内在关联性,以及已有的WMS方法可以计算积分吸光度值,采用机器学习方法建立谐波信号(S2f/1f)与积分吸光度(A)的模型,选择极限学习机算法(ELM),其训练时间短,预测结果快。利用神经网络可以逼近真值的特性,仿真确定光线布局下不同流场模型的S2f/1fA,构造数据集对神经网络开展模型训练。在数值仿真验证中,共仿真2 000组数据集,随机选取1 800组作为训练集训练模型,其余200组作为预测集,统计测试集的预测积分吸光度平均相对误差为1.058%,决定系数平均值为0.999,验证了训练模型的可靠性。为进一步探究模型的抗噪声性,采用的方法是在测试集S2f/1f数据集中分别加入3%,5%和10%的随机噪声,统计预测积分吸光度平均相对误差分别为3.1%,4.6%和8.1%,这一结果可以表明ELM具有较好的抗噪声性。基于该方法,在直连式超燃冲压发动机上开展验证实验,实验有效时长为5 s,采集数据约10 GB,分别采用ELM和WMS两种方法解算积分吸光度,对比发现:结果基本一致,且相比执行时间数小时的WMS方法,ELM预测积分吸光度耗时仅为15 s左右,实现了发动机流场积分吸光度的快速测量。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号