首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
物理学   2篇
  2019年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
高光谱成像技术鉴别菠菜叶片农药残留种类   总被引:2,自引:0,他引:2       下载免费PDF全文
吉海彦  任占奇  饶震红 《发光学报》2018,39(12):1778-1784
利用高光谱成像技术无损鉴别菠菜叶片农药残留种类。采用高光谱成像仪采集900~1 700 nm波段内的光谱数据,采用多元散射校正对光谱数据进行预处理。利用主成分分析对不同种类菠菜样品的光谱数据进行分析,结果表明主成分分析能在可视化层面对不同种类的农药残留菠菜样品进行有效判别。另外,将卡方检验特征选择算法分别与支持向量机、朴素贝叶斯、决策树和线性判别分析算法结合,并采用10-fold交叉验证评价方法,筛选出最佳波段和最优判别模型(线性判别模型)。筛选出的8个特征波长为1 439.3,1 442.5,1 445.8,1 449,1 452.3,1 455.5,1 458.7,1 462 nm,模型的预测准确率达到0.993且10次交叉验证的标准差为0.009。结果表明,基于高光谱成像技术能准确地识别菠菜叶片上的农药残留种类。  相似文献   
2.
高光谱成像技术被广泛应用于农产品的检测。基于高光谱成像技术结合机器学习算法无损鉴别不同地区的小米样本。将来源7个省份共计23份样品的小米样本根据地理区域划分为东北地区、河北、陕西、山东和山西共5大类,其中东北地区共6份样品,山西地区5份样品,河北、陕西和山东各4份样品。将每份样品均分为10等份并利用高光谱成像仪采集900~1 700 nm波段内小米的高光谱数据。为了减少光照不均匀和暗电流对实验的影响,对采集到的高光谱数据进行黑白校正。利用ENVI软件选取小米高光谱图像的感兴趣区域(ROI),每份小米样品选取9个ROI。计算ROI内的平均光谱值,以此平均值作为该样本的一条光谱记录,最后共收集到2 070条光谱曲线,其中东北类540条,山西类450条,其他河北类、山东类、陕西类各360条。为了减少样品表面的不平整性引起的散射现象,进而影响小米的真实光谱信息,对收集到的原始光谱进行多元散射校正预处理(MSC)。采用随机划分法对校正过后的光谱数据划分训练集和测试集,测试集占的比例为0.3。利用线性判别分析(LDA)对不同产地小米的光谱数据进行可视化分析,将测试集代入训练好的LDA模型,做出预测结果的混淆矩阵(Confusion Matrix),结果表明LDA对于陕西和山西类的预测准确率为0.84和0.99,对于东北、河北和山东的预测准确率仅为0.68,0.68和0.40。进而采用递归特征消除(RFE)对小米的光谱信息进行特征选择,去除冗余的信息,提高模型的预测准确率。将RFE分别与支持向量机(SVM)和逻辑回归(LR)结合,对不同产地小米的判别进行对比分析。将小米光谱数据的训练集分别代入SVM-RFE和LR-RFE模型并结合3折交叉验证技术,以模型F值的微平均(Micro-averaging)最优选择出相应的特征子集。结果表明,LR-RFE选择的波长数为74个,其模型的Micro_F为0.59;SVM-RFE选择的波长数为220,其模型的Micro_F为0.66。将选择后的特征子集应用到测试集并将测试集分别代入SVM和LR模型,采用模型预测结果的混淆矩阵和模型的受试者工作特征曲线(ROC)作为评价方法。结果表明SVM-RFE对东北地区、河北、陕西、山东和山西的预测准确率分别为1,0.37,0.72,0和1,其ROC曲线下面积(AUC)分别为0.82,0.92,0.93,0.70和0.99。LR-RFE的预测准确率分别为0.92,0,0.97,0和0.80,其AUC分别为0.72,0.74,0.94,0.66和0.88。从预测结果可以看出SVM-RFE模型的综合分类性能优于LR-RFE,而对陕西类的判别LR-RFE要优于SVM-RFE,对于河北类和山东类两个模型都不能有效判别。这两个模型的预测准确率相比LDA有了一定的提升。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号