首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2015年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
基于激光近红外的稻米油掺伪定性-定量分析   总被引:1,自引:0,他引:1  
该文主要研究激光近红外光谱分析技术结合化学计量学方法对稻米油掺伪进行定性-定量分析。分别将大豆油、玉米油、菜籽油、餐饮废弃油掺入稻米油中,按照不同质量比配置189个掺伪油样,利用激光近红外光谱仪采集光谱;对采集的稻米油掺伪图谱数据进行多元散射校正(MSC)、正交信号校正 (OSC)、标准正态变量变换和去趋势技术联用算法(SNV_DT)三种不同预处理并与原始数据进行比较。采用连续投影算法(SPA)对经过预处理的光谱数据进行特征波长提取,应用支持向量机分类(SVC)方法建立稻米油掺伪样品的定性分类校正模型,选择网格搜索算法对模型参数组合(C,g)进行寻优,确定最优参数组合。另采用后向间隔偏最小二乘法(BiPLS)和SPA对预处理后的光谱数据进行特征波长提取,分别应用偏最小二乘法(PLS)和支持向量机回归(SVR)建立掺伪油含量的定量校正模型,并选用网格搜索算法对SVR模型参数组合(C,g)进行寻优,建立最优参数模型。研究表明,建立的SVC模型预测集和校正集的准确率分别达到了95%和100%;对比SVR和PLS方法建立的数学模型对稻米油中掺杂油脂的含量的预测,两种方法均能够实现含量预测,SVR模型的预测能力更好,相关系数R高于0.99,均方根误差(MSE)低于5.55×10-4,预测精度高。结果表明,采用激光近红外光谱分析技术可以实现稻米油掺伪的定性-定量分析,同时为其他油脂的掺伪分析提供了方法。  相似文献   
2.
应用近红外光谱对低碳数脂肪酸含量预测   总被引:2,自引:0,他引:2  
应用近红外光谱技术结合支持向量机回归(support vector machine regression, SVR)方法测量食用植物油脂低碳数脂肪酸(C≤14)含量。使用SupNIR-5700近红外光谱仪采集58个样品的近红外光谱图,通过偏最小二乘(partial least square, PLS)算法剔除奇异样品。选择其中具有代表性的52个样品进行主成分分析(principal component analysis, PCA),选取径向基(radial basis function, RBF)核函数建立支持向量机回归模型,并对光谱预处理方法和参数寻优方法进行了详细的分析和讨论。实验表明,经过粒子群算法(particle swarm optimization, PSO)优化后模型的性能都有所提高,泛化能力更强,预测的准确度和稳健性更好;其中预处理方法2经过PSO优化寻优后的参数C=2.085, γ=22.20时,预测集和校正集相关系数(correlation coefficient, r)分别达到了0.998 0和0.925 8,均方根误差(root mean square error, MSE)分别为0.000 4和0.014 3。研究结果表明,应用近红外光谱结合PSO-SVR方法进行食用植物油脂低碳数脂肪酸含量快速、准确的预测是可行的。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号