首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
数学   12篇
  2021年   1篇
  2014年   1篇
  2013年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  1998年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Taherian  A.  Toutounian  F. 《Numerical Algorithms》2021,88(4):1831-1850
Numerical Algorithms - In this paper, the block generalized product-type bi-conjugate gradient (GPBi-CG) method for solving large, sparse nonsymmetric linear systems of equations with multiple...  相似文献   
2.
Solving systems of nonlinear equations is perhaps one of the most difficult problems in all numerical computation. Although numerous methods have been developed to attack this class of numerical problems, one of the simplest and oldest methods, Newton’s method is arguably the most commonly used. As is well known, the convergence and performance characteristics of Newton’s method can be highly sensitive to the initial guess of the solution supplied to the method. In this paper a hybrid scheme is proposed, in which the Electromagnetic Meta-Heuristic method (EM) is used to supply a good initial guess of the solution to the finite difference version of the Newton-GMRES method (NG) for solving a system of nonlinear equations. Numerical examples are given in order to compare the performance of the hybrid of the EM and NG methods. Empirical results show that the proposed method is an efficient approach for solving systems of nonlinear equations.  相似文献   
3.
ILUS factorization has many desirable properties such as its amenability to the skyline format, the ease with which stability may be monitored, and the possibility of constructing a preconditioner with symmetric structure. In this paper we introduce a new preconditioning technique for general sparse linear systems based on the ILUS factorization strategy. The resulting preconditioner has the same properties as the ILUS preconditioner. Some theoretical properties of the new preconditioner are discussed and numerical experiments on test matrices from the Harwell-Boeing collection are tested. Our results indicate that the new preconditioner is cheaper to construct than the ILUS preconditioner.  相似文献   
4.
5.
In each step of the quasi-minimal residual (QMR) method which uses a look-ahead variant of the nonsymmetric Lanczos process to generate basis vectors for the Krylov subspaces induced byA, it is necessary to decide whether to construct the Lanczos vectorsv n +1 andw n +1 as regular or inner vectors. For a regular step it is necessary thatD k =W k T V k is nonsingular. Therefore, in the floating-point arithmetic, the smallest singular value of matrix Dk,σ min (D k ), is computed and an inner step is performed ifσ min (D k )<∈, where ∈ is a suitably chosen tolerance. In practice it is absolutely impossible to choose correctly the value of the tolerance ∈. The subject of this paper is to show how discrete stochastic arithmetic remedies the problem of this tolerance, as well as the problem of the other tolerances which are needed in the other checks of the QMR method with the estimation of the accuracy of some intermediate results. Numerical examples are used to show the good numerical properties.  相似文献   
6.
In this paper, we propose to solve the Toeplitz linear systems T n x?=?b by a recursive-based method. The method is based on repeatedly dividing the original problem into two subproblems that involve the solution of systems containing the Schur complement of the leading principal submatrix of the previous level. The idea is to solve the linear systems S m y?=?d, where S m is the Schur complement of T 2m (the principal submatrix of T n ), by using a self preconditioned iterative methods. The preconditioners, which are the approximate inverses of S m , are constructed based on famous Gohberg–Semencul formula. All occurring matrices are represented by proper generating vectors of their displacement rank characterization. We show that, for well conditioned problems, the proposed method is efficient and robust. For ill-conditioned problems, by using some iterative refinement method, the new method would be efficient and robust. Numerical experiments are presented to show the effectiveness of our new method.  相似文献   
7.
This paper proposes a new breakdown-free preconditioning technique, called SAINV-NS, of the AINV method of Benzi and Tuma for nonsymmetric positive definite matrices. The resulting preconditioner which is an incomplete factorization of the inverse of a nonsymmetric matrix will be used as an explicit right preconditioner for QMR, BiCGSTAB and GMRES(m) methods. The preconditoner is reliable (pivot breakdown can not occur) and effective at reducing the number of iterations. Some numerical experiments on test matrices are presented to show the efficiency of the new method and comparing to the AINV-A algorithm.  相似文献   
8.
The major drawback of the s-step iterative methods for nonsymmetric linear systems of equations is that, in the floating-point arithmetic, a quick loss of orthogonality of s-dimensional direction subspaces can occur, and consequently slow convergence and instability in the algorithm may be observed as s gets larger than 5. In [18], Swanson and Chronopoulos have demonstrated that the value of s in the s-step Orthomin(k) algorithm can be increased beyond s=5 by orthogonalizing the s direction vectors in each iteration, and have shown that the ATA-orthogonal s-step Orthomin(k) is stable for large values of s (up to s=16). The subject of this paper is to show how by using the CADNA library, it is possible to determine a good value of s for ATA-orthogonal s-step Orthomin(k), and during the run of its code to detect the numerical instabilities and to stop the process correctly, and to restart the ATA-orthogonal s-step Orthomin(k) in order to improve the computed solution. Numerical examples are used to show the good numerical properties. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
9.
We present a nested splitting conjugate gradient iteration method for solving large sparse continuous Sylvester equation, in which both coefficient matrices are (non-Hermitian) positive semi-definite, and at least one of them is positive definite. This method is actually inner/outer iterations, which employs the Sylvester conjugate gradient method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent and Hermitian positive definite splitting of the coefficient matrices. Convergence conditions of this method are studied and numerical experiments show the efficiency of this method. In addition, we show that the quasi-Hermitian splitting can induce accurate, robust and effective preconditioned Krylov subspace methods.  相似文献   
10.
We present the recurrence formulas for computing the approximate inverse factors of tridiagonal and pentadiagonal matrices using bordering technique. Resulting algorithms are used to approximate the inverse of pivot blocks needed for constructing block ILU preconditioners for solving the block tridiagonal linear systems, arising from discretization of partial differential equations. Resulting preconditioners are suitable for parallel implementation. Comparison with other methods are also included.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号