首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
化学   4篇
力学   2篇
数学   8篇
物理学   8篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1980年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Many problems in Stokes flow (and linear elasticity) require the evaluation of vector fields defined in terms of sums involving large numbers of fundamental solutions. In the fluid mechanics setting, these are typically the Stokeslet (the kernel of the single layer potential) or the Stresslet (the kernel of the double layer potential). In this paper, we present a simple and efficient method for the rapid evaluation of such fields, using a decomposition into a small number of Coulombic N-body problems, following an approach similar to that of Fu and Rodin [Y. Fu, G.J. Rodin, Fast solution methods for three-dimensional Stokesian many-particle problems, Commun. Numer. Meth. En. 16 (2000) 145–149]. While any fast summation algorithm for Coulombic interactions can be employed, we present numerical results from a scheme based on the most modern version of the fast multipole method [H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm in three dimensions, J. Comput. Phys. 155 (1999) 468–498]. This approach should be of value in both the solution of boundary integral equations and multiparticle dynamics.  相似文献   
2.
Shilpa Khatri  Anna-Karin Tornberg 《PAMM》2007,7(1):1024509-1024510
We present a numerical method modeling soluble surfactants on deforming interfaces. The method uses an explicit Eulerian discretization of the interface allowing the use of standard finite difference schemes to solve coupled time-dependent differential equations for the concentration of surfactant on the interface and for the concentration of surfactant in the bulk. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
3.
Advances in Computational Mathematics - It is well known in the literature that standard hierarchical matrix ( ${\mathscr{H}}$ -matrix)-based methods, although very efficient for asymptotically...  相似文献   
4.
We present a numerical method for suspensions of spheroids of arbitrary aspect ratio, which sediment under gravity. The method is based on a periodized boundary integral formulation using the Stokes double layer potential. The resulting discrete system is solved iteratively using generalized minimal residual accelerated by the spectral Ewald method, which reduces the computational complexity to , where N is the number of points used to discretize the particle surfaces. We develop predictive error estimates, which can be used to optimize the choice of parameters in the Ewald summation. Numerical tests show that the method is well conditioned and provides good accuracy when validated against reference solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
6.
7.
The Raman spectra of RbH2AsO4, are presented as a function of temperature for the paraelectric phase and are used to investigate the molecular structure of this phase and to investigate the coupled proton—phonon mode responsible for the onset of the ferroelectric phase.  相似文献   
8.
The low frequency xy Raman spectra of RbH2AsO4 are reported as a function of temperature in the paraelectric phase and are fitted to a coupled damped harmonic oscillator model to yield the soft mode behavior of the ferroelectric model.  相似文献   
9.
A highly accurate method for simulating surfactant-covered droplets in two-dimensional Stokes flow with solid boundaries is presented. The method handles both periodic channel flows of arbitrary shape and stationary solid constrictions. A boundary integral method together with a special quadrature scheme is applied to solve the Stokes equations to high accuracy, also for closely interacting droplets. The problem is considered in a periodic setting and Ewald decompositions for the Stokeslet and stresslet are derived. Computations are accelerated using the spectral Ewald method. The time evolution is handled with a fourth-order, adaptive, implicit-explicit time-stepping scheme. The numerical method is tested through several convergence studies and other challenging examples and is shown to handle drops in close proximity both to other drops and solid objects to high accuracy.  相似文献   
10.
A spectrally accurate fast method for electrostatic calculations under periodic boundary conditions is presented. We follow the established framework of FFT-based Ewald summation, but obtain a method with an important decoupling of errors: it is shown, for the proposed method, that the error due to frequency domain truncation can be separated from the approximation error added by the fast method. This has the significance that the truncation of the underlying Ewald sum prescribes the size of the grid used in the FFT-based fast method, which clearly is the minimal grid. Both errors are of exponential-squared order, and the latter can be controlled independently of the grid size. We compare numerically to the established SPME method by Essmann et al. and see that the memory required can be reduced by orders of magnitude. We also benchmark efficiency (i.e. error as a function of computing time) against the SPME method, which indicates that our method is competitive. Analytical error estimates are proven and used to select parameters with a great degree of reliability and ease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号