首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
数学   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 7 毫秒
1
1.
In this study, the effect of different numbers of baffles is investigated using computational simulation. Laboratory measurements using different numbers of constant height baffles in a rectangular primary sedimentation tank are conducted. The velocity fields measured by an Acoustic Doppler Velocimeter (ADV) are used to verify the results of the computational model. The effects of the number of baffles arrangement on the hydraulic performance of primary settling tanks are studied by using two different ways: the parameters of flow pattern and the Flow Through Curves (FTCs) method. The results of both the experimental and computational investigations indicate that increasing the number of baffles in suitable positions provides minimum volume of the recirculation region, dissipates the kinetic energy, creates a uniform flow field in the tank and finally the hydraulic efficiency of the sedimentation tank will be improved.  相似文献   
2.
Inlets should be designed to dissipate the kinetic energy or velocity head of the mixed liquor and to prevent short-circuiting, mitigate the effects of density currents, and minimize blanket disturbances. Flow in primary settling tank is simulated by means of computational fluid dynamics. The fluid is assumed incompressible and non-buoyant. A two-dimensional computational and one phase fluid dynamics model was built to simulate the flow properties in the settling tank including the velocity profiles, the flow separation area and kinetic energy. In this study, the RNG turbulent model was solved with the Navier–Stokes equations. In order to evaluate hydraulic influences on the velocity profile, separation length and kinetic energy, three different of opening positions and two and three aperture in inlets were simulated. The flow model uses to apply a fixed-grid of cells that are all rectangular faces; the fluid moves through the grid and free surfaces are tracked with the volume-of-fluid (VOF) technique. Effects of numbers and locations of inlet apertures on the flow field are presented and the results show the positions of inlet apertures are affected on the flow pattern in the settling basin and increasing the numbers of slots can reduce kinetic energy in the inlet zone and produce uniform flow.  相似文献   
3.
Computational fluid dynamics (CFD) is used extensively by engineers to model and analyze complex issues related to hydraulic design, planning studies for future generating stations, civil maintenance and supply efficiency. In order to find the optimal position of a baffle in a rectangular primary sedimentation tank, computational investigations are performed. Also laboratory experiments are conducted to verify the numerical results and the measured velocity fields which were by Acoustic Doppler Velocimeter (ADV) are used. The GMRES algorithm as a pressure solver was used in the computational modeling. The results of computational investigations performed in the present study indicate that the favorable flow field (uniform in the settling zone) would be enhanced for the case that the baffle position provide small circulation regions volume and dissipate the kinetic energy in the tank. Also results show that the GMRES algorithm can obtain the good agreement between the results of numerical models and experimental tests.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号