首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   23篇
化学   223篇
力学   7篇
综合类   2篇
数学   64篇
物理学   61篇
  2023年   11篇
  2022年   7篇
  2021年   35篇
  2020年   39篇
  2019年   35篇
  2018年   16篇
  2017年   11篇
  2016年   20篇
  2015年   21篇
  2014年   13篇
  2013年   20篇
  2012年   11篇
  2011年   20篇
  2010年   11篇
  2009年   7篇
  2008年   11篇
  2007年   9篇
  2006年   7篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   2篇
  2001年   1篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1978年   1篇
排序方式: 共有357条查询结果,搜索用时 93 毫秒
1.
Diene rhodium complexes are important catalysts in modern organic synthesis. Herein, we report a new approach to such complexes with the uncommon planar chirality. The synthesis is achieved by face-selective coordination of the prochiral 2,5-disubstituted-1,4-benzoquinones (R2-Q) with rhodium precursors containing the chiral auxiliary ligand S-salicyl-oxazoline (S-Salox). Such coordination leads to the formation of (R,R-R2-Q)Rh(S-Salox) complexes in high yields and with exceptional diastereoselectivity (d. r.>20 : 1). Subsequent replacement of the auxiliary ligand provides various benzoquinone rhodium complexes with retention of the planar chirality. Combined theoretical and experimental studies show that due to their electron-withdrawing nature benzoquinones bind metals stronger than the related 1,4-cyclohexadiene, but weaker than other common diene ligands, such as cyclooctadiene.  相似文献   
2.
The existence of non-radiating electromagnetic sources attracts much attention in photonic community and gives rise to extensive discussions of various applications in lasing, medical imaging, sensing, and nonlinear optics. In this article, the existence of magnetic anapole states (or magnetic-type non-radiating sources) characterized by a suppressed magnetic dipole radiation in a dielectric cylindrical particle is theoretically predicted and experimentally demonstrated. The specific features of the magnetic anapole state under ideal conditions are identified, followed by a demonstration of how their existence can be detected in practical structures. The concept is valid in various frequency bands from visible range for nanoparticles to microwave range for millimeter size objects. The experimental study is performed in microwave frequency range which allows not only to measure the far-field (scattered field) characteristics, but also to probe the peculiar field profile directly inside the dielectric particle. The experimental results agree well with the analytical ones and pave the way to detect and identify nontrivial different-type anapole states.  相似文献   
3.
Si nanoparticles (NPs), which are innovative promising light-harvesting components of thin-film solar cells and key-enabling biocompatible theranostic elements of infrared-laser and radiofrequency hyperthermia-based therapies of cancer cells in tumors and metastases, are significantly advanced in their near/mid-infrared band-to-band and free-carrier absorption via donor sulfur-hyperdoping during high-throughput facile femtosecond-laser ablative production in liquid carbon disulfide. High-resolution transmission electron microscopy and Raman microscopy reveal their mixed nanocrystalline/amorphous structure, enabling the extraordinary sulfur content of a few atomic percents and very minor surface oxidation/carbonization characterized by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. A 200-nm thick layer of the nanoparticles exhibits near−mid-infrared absorbance, comparable to that of the initial 380-micron thick n-doped Si wafer (phosphor-dopant concentration ≈1015 cm−3), with the corresponding extinction coefficient for the hyperdoped NPs being 4–7 orders higher over the broadband spectral range of 1–25 micrometers. Such ultimate, but potentially tunable mid-IR structured, multi-band absorption of various sulfur-impurity clusters and smooth free-carrier absorption are break through advances in mid-infrared (mid-IR) laser and radiofrequency (RF) hyperthermia-based therapies, as envisioned in the RF-heating tests, and in fabrication of higher-efficiency thin-film and bulk photovoltaic devices with ultra-broad (UV−mid-IR) spectral response.  相似文献   
4.
5.
Growing demands of material science and, in particular, in the field of nonlinear optics (NLO) encourage us to look for stable highly polarizable molecules with excess diffuse electrons. An unusual class of compounds called electrides comply with these requirements. Many attempts have been made, yet only few electrides have been synthesized as solids and none of them as molecular species. In this paper, a new theoretically designed molecular species with electride characteristics is reported. The idea of this molecular electride comes from the formation of electride-like features in the MgO crystal with defect F-centers. The geometry of the investigated molecule can be described as a Mg4O4 cube with one oxygen atom removed. In Mg4O3, two 3s electrons are pushed out from the inner area of the molecule forming a diffuse electride multicentered bond. Our calculations show that this electride-like cluster possesses a noticeably large first hyperpolarizability β=5733 au. At the same time, a complete cube Mg4O4 and Mg4O32+ without electride electron pair have much smaller β: 0 au and 741 au, respectively. This fact indicates the decisive role of the electride electron pair in NLO properties. Additionally, vertical detachment energies of isomers (VDE), excitation energies ΔE, polarizabilities α, and IR spectra were calculated. These properties, including β, are supposed to be observable experimentally and can serve as indirect evidence of the stable molecular electride formation.  相似文献   
6.
7.
8.
9.
10.
A series of highly energetic organic salts comprising a tetrazolylfuroxan anion, explosophoric azido or azo functionalities, and nitrogen-rich cations were synthesized by simple, efficient, and scalable chemical routes. These energetic materials were fully characterized by IR and multinuclear NMR (1H, 13C, 14N, 15N) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Additionally, the structure of an energetic salt consisting of an azidotetrazolylfuroxan anion and a 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium cation was confirmed by single-crystal X-ray diffraction. The synthesized compounds exhibit good experimental densities (1.57–1.71 g cm−3), very high enthalpies of formation (818–1363 kJ mol−1), and, as a result, excellent detonation performance (detonation velocities 7.54–8.26 kms−1 and detonation pressures 23.4–29.3 GPa). Most of the synthesized energetic salts have moderate sensitivity toward impact and friction, which makes them promising candidates for a variety of energetic applications. At the same time, three compounds have impact sensitivity on the primary explosives level (1.5–2.7 J). These results along with high detonation parameters and high nitrogen contents (66.0–70.2 %) indicate that these three compounds may serve as potential environmentally friendly alternatives to lead-based primary explosives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号