首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   0篇
化学   46篇
晶体学   1篇
力学   17篇
数学   47篇
物理学   106篇
  2020年   5篇
  2019年   4篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   5篇
  2014年   9篇
  2013年   13篇
  2012年   2篇
  2011年   11篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1997年   4篇
  1995年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   6篇
  1988年   8篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1980年   2篇
  1979年   3篇
  1976年   2篇
  1974年   4篇
  1972年   1篇
  1971年   5篇
  1970年   1篇
  1969年   2篇
  1968年   3篇
  1967年   1篇
  1965年   1篇
  1942年   2篇
  1936年   1篇
  1935年   1篇
  1934年   2篇
  1933年   1篇
排序方式: 共有217条查询结果,搜索用时 16 毫秒
1.
2.
Lapin  S. V. 《Mathematical Notes》2017,102(5-6):806-823
Mathematical Notes - A chain bicomplex for A ∞-algebras, which generalizes the Tsygan chain bicomplex in the theory of cyclic homology of associative algebras, is constructed by using the...  相似文献   
3.
The majority of the studies which consider the flow of a dissociating gas in a turbulent boundary layer are devoted to the investigation of either frozen or equilibrium flows on a flat plate.The frozen turbulent boundary layer has been studied by Dorrance [1], Kutateladze and Leont'ev [2], and Lapin and Sergeev [3]. A study of the effect of catalytic recombination processes at the plate surface on the heat transfer in a frozen turbulent boundary layer was made by Lapin [4].Kosterin and Koshmarov [5], Ginzburg [6], Dorrance [7], and Lapin [8] have studied the turbulent boundary layer on a plate in equilibrium dissociating gas.The calculation of the heat transfer in a turbulent boundary layer on a catalytic plate surface with nonequilibrium dissociation was made by Kulgein [9]. In this study the nonequilibrium nature of the dissociation process was taken into account only in the laminar sublayer, while the flow in the turbulent core was considered frozen. The solution was found numerically using a computer by means of a laborious iteration process.The present paper reports a method for calculating the turbulent boundary layer on a flat catalytic plate with arbitrary dissociation rate. The method, constructed using the assumptions customary for turbulent boundary layer theory, is a successive approximation method. Good convergence of the method is assured by the fact that the effect of the nonequilibrium nature of the dissociation process on the parameter distribution in the boundary layer and, consequently, on the friction and heat transfer may be allowed for merely by finding corrections, usually relatively small, to the distribution of these parameters in the equilibrium or frozen flows. The basis of the study is the two-layer scheme of the turbulent boundary layer. The Prandtl and Schmidt numbers and also their turbulent analogs are taken equal to unity. As the model of the dissociating gas we use the Lighthill model of the ideal dissociating gas [10], extended by Freeman [11] to nonequilibrium flows.  相似文献   
4.
We construct and investigate a new iterative solution method for a finite-dimensional constrained saddle point problem. The results are applied to prove the convergence of different iterativemethods formesh approximations of variational inequalities with constraints on the gradient of solution. In particular, we prove the convergence of two-stage iterative methods. The main advantage of the proposed methods is the simplicity of their implementation. The numerical testing demonstrates high convergence rate of the methods.  相似文献   
5.
6.
7.
8.
9.
We present a new time-splitting scheme for the numerical simulation of fluid–structure interaction between blood flow and vascular walls. This scheme deals in a successful way with the problem of the added mass effect. The scheme is modular and it embodies the stability properties of implicit schemes at the low computational cost of loosely coupled ones.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号