首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
  国内免费   4篇
化学   20篇
力学   1篇
数学   7篇
物理学   17篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有45条查询结果,搜索用时 156 毫秒
1.
A nanostructured layer was fabricated by using fast multiple rotation rolling (FMRR) on the surface of 316L stainless steel. The microstructure in the surface was characterized by transmission electron microscopy and X-ray diffraction. The effects of FMRR on the microhardness, surface roughness and corrosion behavior of the stainless steel were investigated by microhardness measurements, surface roughness measurements, potentiodynamic polarization curves and pitting corrosion tests. The surface morphologies of pitting corrosion specimens were characterized by scanning electron microscopy. The results show that FMRR can cause surface nanocrystallization with the grain size ranges from 6 to 24 nm in the top surface layer of the sample. The microhardness of FMRR specimen in the top surface layer remarkably increases from 190 to 530 HV. However, the surface roughness slightly rises after FMRR treatment. The potentiodynamic polarization curves and pitting corrosion tests indicated that the FMRR treated 316L stainless steel with a surface nanocrystallized layer reduced the corrosion resistance in a 3.5% NaCl solution and enhanced the pitting corrosion rate in a FeCl3 solution. Possible reasons leading to the decrease in corrosion resistance were discussed.  相似文献   
2.
Sulfur K-edge X-ray absorption near-edge structure spectroscopy and chemical sequential extraction was respectively used to study the speciation of sulfur in two sulfur-rich soils samples. Sulfur K-edge X-ray absorption near-edge structure spectroscopy analysis obtained a variety of spectra. Spectral fitting of the X-ray absorption near-edge structure spectra utilizing a large set of model compounds showed great differences between these two sulfur-rich soil samples. It was found that both of the soil samples had high sulfur content (8.40 and 11.57?g?kg?1, respectively). Chemical extraction results suggested that sulfur mainly existed as organic in the ancient paddy soil (7.37?g?kg?1) and more reduced sulfur was identified in it. X-ray absorption near-edge structure spectroscopy also got similar results. These organic forms of sulfur existed in organic matter across a range of oxidation states. There was high proportion of oxidized sulfur in the sulfuric acid plant that mainly existed as sulfate.  相似文献   
3.
Two reduction-cleavable ABA triblock copolymers possessing two disulfide linkages, PMMA-ss-PMEO3MA-ss-PMMA and PDEA-ss-PEO-ss-PDEA were synthesized via facile substitution reactions from homopolymer precursors, where PMMA, PMEO3MA, PDEA, and PEO represent poly(methyl methacrylate), poly(tri(ethylene glycol) monomethyl ether methacrylate, poly(2-(diethylamino)ethyl methacrylate), and poly(ethylene oxide), respectively. Spherical micelles were obtained through supramolecular self-assembly of these two triblock copolymers in aqueous solutions. The resultant micelles with abundant disulfide bonds could serve as soft templates and precisely accommodate gold nanoparticles in the core/shell interface as a result of the formation of Au-S bonds.  相似文献   
4.
针对人口死亡率时间序列既有摆动又有一定趋势的特点,首先对人口死亡率的时间趋势项进行拟合,然后对人口死亡率的误差序列进行分析,提出了以规范化的自相关系数为权,用加权的马尔可夫链来预测人口死亡率状况。并通过实例对该方法进行了具体的应用。  相似文献   
5.
采用侧面紫外火花隙自动预电离代替小极上小孔预电离,使放电泵浦氟化氪激光器的主放电均匀性大为改善。输出激光能量由140mJ提高到250mJ,增益区光能密度为2.3J/1,同时电极寿命和气体寿命也大为提高。  相似文献   
6.
In this work, the donor:acceptor ratio effected photophysical properties of non-fullerene organic solar cells are comparatively investigated. Effective transportation of the photo-generated charge carriers can be obtained with the PDBD-T:ITIC ratio variation. There is no significant energy loss variation exists in the process of changing the D:A ratio.  相似文献   
7.
Proton adsorption on metallic catalysts is a prerequisite for efficient hydrogen evolution reaction (HER). However, tuning proton adsorption without perturbing metallicity remains a challenge. A Schottky catalyst based on metal–semiconductor junction principles is presented. With metallic MoB, the introduction of n‐type semiconductive g‐C3N4 induces a vigorous charge transfer across the MoB/g‐C3N4 Schottky junction, and increases the local electron density in MoB surface, confirmed by multiple spectroscopic techniques. This Schottky catalyst exhibits a superior HER activity with a low Tafel slope of 46 mV dec?1 and a high exchange current density of 17 μA cm?2, which is far better than that of pristine MoB. First‐principle calculations reveal that the Schottky contact dramatically lowers the kinetic barriers of both proton adsorption and reduction coordinates, therefore benefiting surface hydrogen generation.  相似文献   
8.
The implementation of clean energy techniques, including clean hydrogen generation, use of solar-driven photovoltaic hybrid systems, photochemical heat generation as well as thermoelectric conversion, is crucial for the sustainable development of our society. Among these promising techniques, electrocatalysis has received significant attention for its ability to facilitate clean energy conversion because it promotes a higher rate of reaction and efficiency for the associated chemical transformations. Noble-metal-based electrocatalysts typically show high activity for electrochemical conversion processes. However, their scarcity and high cost limit their applications in electrocatalytic devices. To overcome this limitation, binary catalysts prepared by alloying with transition metals can be used. However, optimization of the activity of the binary catalysts is considerably limited because of the presence of the miscibility gap in the phase diagram of binary alloys. The activity of binary electrocatalysts can be attributed to the adsorption energy of molecules and intermediates on the surface. High-entropy alloys (HEAs), which consist of diverse elements in a single NP, typically exhibit better physical and/or chemical properties than their single-element counterparts, because of their tunable composition and inherent surface complexity. Further, HEAs can improve the performance of binary electrocatalysts because they exhibit a near-continuous distribution of adsorption energy. Recently, HEAs have gained considerable attention for their application in electrocatalytic reactions. This review summarizes recent research advances in HEA nanostructures and their application in the field of electrocatalysis. First, we introduce the concept, structure, and four core effects of HEAs. We believe that this part will provide the basic information about HEAs. Next, we discuss the reported top-down and bottom-up synthesis strategies, emphasizing on the carbothermal shock method, nanodroplet-mediated electrodeposition, fast moving bed pyrolysis, polyol process, and dealloying. Other methods such as combinatorial co-sputtering, ultrashort-pulsed laser ablation, ultrasonication-assisted wet chemistry, and scanning-probe block copolymer lithography are also highlighted. Among these methods, wet chemistry has been reported to be effective for the formation of nano-scale HEAs because it facilitates the concurrent reduction of all metal precursors to form solid-solution alloys. Next, we present the theoretical investigation of HEA nanocatalysts, including their thermodynamics, kinetic stability, and adsorption energy tuning for optimizing their catalytic activity and selectivity. To elucidate the structure–property relationship in HEAs, we summarize the research progress related to electrocatalytic reactions promoted by HEA nanocatalysts, including the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, methanol oxidation reaction, and CO2 reduction reaction. Finally, we discuss the challenges and various strategies toward the development of HEAs.  相似文献   
9.
Yao B  Luo G  Wang L  Gao Y  Lei G  Ren K  Chen L  Wang Y  Hu Y  Qiu Y 《Lab on a chip》2005,5(10):1041-1047
A simply fabricated microfluidic device using a green organic light emitting diode (OLED) and thin film interference filter as integrated excitation source is presented and applied to fluorescence detection of proteins. A layer-by-layer compact system consisting of glass/PDMS microchip, pinhole, excitation filter and OLED is designed and equipped with a coaxial optical fiber and for fluorescence detection a 300 microm thick excitation filter is employed for eliminating nearly 80% of the unwanted light emitted by OLEDs which has overlaped with the fluorescence spectrum of the dyes. The distance between OLED illuminant and microchannels is limited to approximately 1 mm for sensitive detection. The achieved fluorescence signal of 300 microM Rhodamine 6G is about 13 times as high as that without the excitation filter and 3.5 times the result of a perpendicular detection structure. This system has been used for fluorescence detection of Rhodamine 6G, Alexa 532 and BSA conjugates in 4% linear polyacrymide (LPA) buffer (in 1 x TBE, pH 8.3) and 1.4 fmol and 35 fmol mass detection limits at 0.7 nl injection volume for Alexa and Rhodamine dye have been obtained, respectively.  相似文献   
10.
Zhou J  Ren K  Dai W  Zhao Y  Ryan D  Wu H 《Lab on a chip》2011,11(13):2288-2294
We study the rate of response to changes in the rate of flow and the perturbations in flow in polydimethylsiloxane (PDMS) microfluidic chips that are subjected to several common flow-control systems. We find that the flow rate of liquid delivered from a syringe pump equipped with a glass syringe responds faster to the changes in the conditions of flow than the same liquid delivered from a plastic syringe; and the rate of flow delivered from compressed air responds faster than that from a glass syringe. We discover that the rate of flow that is driven by a syringe pump and regulated by an integrated pneumatic valve responds even faster, but this flow-control method is characterized by large perturbations. We also examine the possible effects of these large perturbations on NIH 3T3 cells in microfluidic channels and find that they could cause the detachment of NIH 3T3 cells in the microchannels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号