首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
化学   15篇
力学   2篇
数学   30篇
物理学   2篇
  2021年   1篇
  2018年   2篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   8篇
  2010年   6篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1993年   2篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
In this paper, the postbuckling behavior of rectangular orthotropic laminated composite plates with initial imperfections under inplane shear load is investigated in a closed-form analytical manner. The plates under consideration are assumed to be infinitely long in the longitudinal direction. At the longitudinal edges, two different sets of boundary conditions are considered, specifically 1) simply supported edges and 2) fully clamped edges. Using Timoshenko-type shape functions for both the initial bifurcational buckling analysis and the subsequent Marguerre-type postbuckling studies, closed-form analytical solutions for the buckling loads and for the postbuckling state variables are derived. A comparison with geometrically non-linear finite element computations shows that the derived analysis approaches are suitable for postbuckling studies in load ranges not too far beyond bifurcational buckling as they are currently relevant for e.g., composite airframe structural analysis and design. Due to their strictly closed-form analytical nature, the presented analysis methods can be used conveniently in engineering practice for all application purposes where computational time is a crucial factor, especially for preliminary analysis and design or optimization procedures.  相似文献   
2.
Experimental determination of oil-water partition coefficients often poses difficulties associated with emulsion formation. The aim of this work was to find an appropriate technique for determination of oil–water partition coefficients of polar, nonvolatile compounds. Two different methods were tested. The first method used a “silicone membrane equilibrator.” For the second method, solid-phase microextraction (SPME) fibers with a polyacrylate (PA) coating were used as a passive sampler. With both methods, oil–water partition coefficients for 14 compounds with polar functional groups were determined at 37 °C with good repeatability (standard deviation 0.11 log units or lower). The partition coefficients determined with the silicone membrane equilibrator method ranged from 0.50 to 3.49 log units. The oil–water partition coefficients obtained with the PA-SPME passive sampling approach were significantly higher than those obtained with the silicone membrane equilibrator method for nine of 14 compounds. The differences were up to 0.39 log units (i.e., a factor of 2.5). Additional experiments suggested that this difference occurred because the sorption properties of the PA fibers used were influenced by the surrounding phase, e.g., through swelling of the polymer phase. Therefore, the SPME passive sampling method using PA fibers seems to be less reliable, whereas the silicone membrane equilibrator method was found to be a convenient technique for the determination of oil–water partitioning.  相似文献   
3.
Journal of Optimization Theory and Applications - There is a significant tendency in the industry for automation of the engineering design process. This requires the capability of analyzing an...  相似文献   
4.
Kai-Uwe Widany  Rolf Mahnken 《PAMM》2014,14(1):273-274
In numerical simulations with the finite element method the dependency on the mesh – and for time-dependent problems on the time discretization – arises. Adaptive refinements in space (and time) based on goal-oriented error estimation [1] become more and more popular for finite element analyses to balance computational effort and accuracy of the solution. The introduction of a goal quantity of interest defines a dual problem which has to be solved to estimate the error with respect to it. Often such procedures are based on a space-time Galerkin framework for instationary problems [2]. Discretization results in systems of equations in which the unknowns are nodal values. Contrary, in current finite element implementations for path-dependent problems some quantities storing information about the path-dependence are located at the integration points of the finite elements [3], e.g. plastic strains etc. In this contribution we propose an approach – similar to [4] for sensitivity analysis – for the approximation of the dual problem which mainly maintains the structure of current finite element implementations for path-dependent problems. Here, the dual problem is introduced after discretization. A numerical example illustrates the approach. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
5.
We determine when an arithmetic subgroup of a reductive group defined over a global function field is of type FP by comparing its large-scale geometry to the large-scale geometry of lattices in real semisimple Lie groups.  相似文献   
6.
In this paper stabilized mixed triangular finite elements are presented in order to avoid volume locking and to damp stress oscillations. Geometrically non-linear elastic problems are addressed. The mixed method of incompatible modes and the mixed method of enhanced strains are considered as special cases. As a key idea, volume and area bubble functions are used for the method of incompatible modes and the enhanced strain method [1], thus giving both the interpretation of a mixed finite element method with stabilization terms. Concerning non-linear problems these are non-linearly dependent on the current deformation state, however, linearly dependent stabilization terms are used [1]. The approach becomes most attractive for the numerical implementation, since the use of quantities related to the previous Newton iteration step is completely avoided. The variational formulation for the standard two-field method, the method of incompatible modes and the enhanced strain method in finite deformation problems is derived for a hyper elastic Neo-Hookean material. In the representative example Cook's membrane problem illustrates the good performance of the presented approaches compared to existing finite element formulations. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
7.
Kai-Uwe Widany  Rolf Mahnken 《PAMM》2011,11(1):299-300
The identification of parameters in constitutive laws considering inhomogeneous states of stress and strain is realized by iteratively minimizing a least squares functional. In each iterative step of this optimization problem a finite element analysis is carried out which results in a significant higher numerical cost than a single finite element analysis. Consequently, an efficient discretization is required to keep the numerical cost low. To address this problem an adaptive mesh refinement is considered which is based on a posteriori error indicators [1] leading to refinements appropriate to the parameter identification problem. The goal is to apply the error indicators to the finite element method for tetrahedral elements of low order which are preferable for adaptive mesh refinements and in addition reduce computational effort. Additional stabilization terms in the element formulation [4, 6] reduce volume locking effects making the elements suitable for (nearly) incompressible material behavior. Numerical examples illustrate the progress on this work. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
8.
For the symmetrically supported Euler buckling column with both ends hinged the classical stability theory yields simple trigonometric functions as buckling modes, i.e. w(x) = A sin αx. The eigenvalues α are just multiples of π. In comparison, the analysis of the asymmetrically supported Euler buckling column with one end clamped and the other end hinged is more complicated: The buckling modes are a combination of trigonometric functions in form of w(x) = A (sin αxαx cos (αL)). The eigenvalues follow from a transcendental equation. Applying a geometrically exact theory to the aforementioned Euler buckling problems, a similar relation in the complexity of the analyses will naturally arise. Using, e.g., the elastica model the buckling behavior of the symmetrically supported column is represented by elliptic integrals. However, the determination of the buckling behavior of the asymmetrically supported column turns out to be much more complex and elaborate. This article presents a direct comparison of the symmetrically and asymmetrically supported buckling columns regarding their analyses by means of classical stability theory and by the geometrically exact theory of the elastica. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
9.
Maximum rank-distance (MRD) codes are extremal codes in the space of \(m\times n\) matrices over a finite field, equipped with the rank metric. Up to generalizations, the classical examples of such codes were constructed in the 1970s and are today known as Gabidulin codes. Motivated by several recent approaches to construct MRD codes that are inequivalent to Gabidulin codes, we study the equivalence issue for Gabidulin codes themselves. This shows in particular that the family of Gabidulin codes already contains a huge subset of MRD codes that are pairwise inequivalent, provided that \(2\leqslant m\leqslant n-2\).  相似文献   
10.
In recent years, the NO x emissions of heavy duty gas turbine burners have been significantly reduced by introducing premixed combustion. These highly premixed burners are known to be prone to combustion oscillations. In this paper, investigations of a single model gas turbine burner are reported focusing on thermo-acoustic instabilities and their interaction with the periodic fluctuations of the velocity and pressure. Phase-locked optical measurement techniques such as LDA and LIF gave insight into the mechanisms.Detailed investigations of a gas turbine combustor rig revealed that the combustor as well as the air plenum oscillate in Helmholtz modes. These instabilities could be attributed to the phase lag of the pressure oscillations between the air plenum and the combustor, which causes an acceleration and deceleration of the air flow through the burner and, therefore, alternating patterns of fuel rich and lean bubbles. When these bubbles reach the reaction zone, density fluctuations are generated which in turn lead to velocity fluctuations and, hence, keep up the pressure oscillations.With increasing the equivalence ratio strong combustion oscillations could be identified at the same frequency. Similarly as with weak oscillations, Helmholtz mode pressure fluctuations are present but the resulting velocity fluctuations in the combustor can be described as a pumping motion of the flow. By the velocity fluctuations the swirl stabilization of the flame is disturbed. At the same time, the oscillating pressure inside the combustor reaches its minimum value. Shortly after the flame expands again, the pressure increases inside the combustor. This phenomenon which is triggered by the pressure oscillations inside the air plenum seems to be the basic mechanism of the flame instability and leads to a significant increase of the pressure amplitudes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号