首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16190篇
  免费   2918篇
  国内免费   2863篇
化学   13167篇
晶体学   253篇
力学   820篇
综合类   204篇
数学   2067篇
物理学   5460篇
  2024年   16篇
  2023年   217篇
  2022年   366篇
  2021年   451篇
  2020年   557篇
  2019年   671篇
  2018年   559篇
  2017年   567篇
  2016年   746篇
  2015年   907篇
  2014年   1020篇
  2013年   1245篇
  2012年   1546篇
  2011年   1617篇
  2010年   1189篇
  2009年   1114篇
  2008年   1294篇
  2007年   1126篇
  2006年   991篇
  2005年   916篇
  2004年   782篇
  2003年   634篇
  2002年   732篇
  2001年   581篇
  2000年   387篇
  1999年   302篇
  1998年   235篇
  1997年   185篇
  1996年   165篇
  1995年   144篇
  1994年   135篇
  1993年   90篇
  1992年   85篇
  1991年   78篇
  1990年   88篇
  1989年   50篇
  1988年   45篇
  1987年   26篇
  1986年   24篇
  1985年   28篇
  1984年   13篇
  1983年   13篇
  1982年   6篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1939年   1篇
  1936年   7篇
  1935年   1篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
In bounded convex domains, the regularity of a vector field u with its divu, curlu in Lr space and the tangential component or the normal component of u over the boundary in Lr space, is established for 1<r<. As an application, we derive an Hr(curl,Ω) estimate for solutions to a Maxwell type system with an inhomogeneous boundary condition in convex domains. In contrast to the well-posed region of r in the space Hr(curl,Ω) for the Maxwell type system in Lipschitz domains given by Kar and Sini (2016) [16], we extend the well-posed region to be optimal.  相似文献   
2.
The row iterative method is popular in solving the large‐scale ill‐posed problems due to its simplicity and efficiency. In this work we consider the randomized row iterative (RRI) method to tackle this issue. First, we present the semiconvergence analysis of RRI method for the overdetermined and inconsistent system, and derive upper bounds for the noise error propagation in the iteration vectors. To achieve a least squares solution, we then propose an extended version of the RRI (ERRI) method, which in fact can converge in expectation to the solution of the overdetermined or underdetermined, consistent or inconsistent systems. Finally, some numerical examples are given to demonstrate the convergence behaviors of the RRI and ERRI methods for these types of linear system.  相似文献   
3.
江孝伟  武华 《物理学报》2021,(2):401-408
为了使超材料完美吸收器(metamaterial perfect absorber,MPA)能够同时实现吸收效率和吸收波长的控制,本文提出利用二氧化钒(VO2)和石墨烯作为MPA的材料,通过对MPA的结构设计,在红外波段实现了高吸收,吸收效率最高可达99%.研究发现通过改变VO2的温度和石墨烯的化学势,可同时实现MPA吸收效率和吸收波长的控制,吸收效率调制深度和吸收波长调谐范围分别可达97.08%和3.2μm.通过对MPA在吸收波长处的磁场分布分析可以得出,MPA能够产生高吸收是由于其形成了法布里-帕罗(Fabry-Pérot,FP)干涉腔共振,研究发现MPA的结构参数对FP腔的共振波长具有显著的影响.  相似文献   
4.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
5.
It is the nature of crystals to exist in different polymorphs. The recent emergence of two-dimensional (2D) materials has evoked the discovery of a number of new crystal phases that are different from their bulk structures at ambient conditions, and revealed novel structure-dependent properties, which deserve in-depth understanding and further exploration. In this contribution, we review the recent development of crystal phase control in 2D materials, including group V and VI. transition metal dichalcogenides (TMDs), group IVA metal chalcogenides and noble metals. For each group of materials, we begin with introducing the various existing crystal phases and their structure-related properties, followed by a detailed discussion on factors that influence these crystal structures and thus the possible strategies for phase control. Finally, after summarizing the whole paper, we present the challenges and opportunities in this research direction.  相似文献   
6.
The placement optimization of piezoelectric actuators and active vibration control of a membrane structure are studied in this paper. The classical linear quadratic regulator controllers are designed to suppress the unwanted vibration. Simulation results indicate that the optimal locations of piezoelectric actuators are affected deeply by the additional mass and stiffness of actuators, the computational efficiency of particle swarm optimizer is higher than that of genetic algorithm for this particular problem, and the control performance of optimally placed actuators is better than that of non-optimally placed actuators.  相似文献   
7.
Using the method of the parameter expansion up to the third order, explicitly investigates surface tension effect on harmonics at weakly nonlinear stage in Rayleigh-Taylor instability (RTI) for arbitrary Atwood numbers and compares the results with those of classical RTI within the framework of the third-order weakly nonlinear theory. It is found that surface tension strongly reduces the linear growth rate of time, resulting in mild growth of the amplitude of the fundamental mode, and changes amplitudes of the second and third harmonics, as is expressed as a tension factor coupling in amplitudes of the harmonics. On the one hand, surface tension can either decrease or increase the space amplitude; on the other hand, surface tension can also change their phases for some conditions which are explicitly determined.  相似文献   
8.
9.
The fundamental understanding of the subtle interactions between molecules and plasmons is of great significance for the development of plasmon‐enhanced spectroscopy (PES) techniques with ultrahigh sensitivity. However, this information has been elusive due to the complex mechanisms and difficulty in reliably constructing and precisely controlling interactions in well‐defined plasmonic systems. Herein, the interactions in plasmonic nanocavities of film‐coupled metallic nanocubes (NCs) are investigated. Through engineering the spacer layer, molecule–plasmon interactions were precisely controlled and resolved within 2 nm. Efficient energy exchange interactions between the NCs and the surface within the 1–2 nm range are demonstrated. Additionally, optical dressed molecular excited states with a huge Lamb shift of ≈7 meV at the single‐molecule (SM) level were observed. This work provides a basis for understanding the underlying molecule–plasmon interaction, paving the way for fully manipulating light–matter interactions at the nanoscale.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号