首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3717篇
  免费   86篇
  国内免费   21篇
化学   2309篇
晶体学   63篇
力学   123篇
数学   557篇
物理学   772篇
  2021年   25篇
  2020年   41篇
  2019年   30篇
  2018年   27篇
  2017年   22篇
  2016年   69篇
  2015年   63篇
  2014年   63篇
  2013年   164篇
  2012年   182篇
  2011年   231篇
  2010年   120篇
  2009年   91篇
  2008年   187篇
  2007年   206篇
  2006年   167篇
  2005年   170篇
  2004年   148篇
  2003年   136篇
  2002年   130篇
  2001年   84篇
  2000年   61篇
  1999年   40篇
  1998年   41篇
  1997年   41篇
  1996年   57篇
  1995年   41篇
  1994年   60篇
  1993年   58篇
  1992年   51篇
  1991年   73篇
  1990年   52篇
  1989年   50篇
  1988年   42篇
  1987年   30篇
  1986年   43篇
  1985年   47篇
  1984年   67篇
  1983年   44篇
  1982年   62篇
  1981年   49篇
  1980年   45篇
  1979年   33篇
  1978年   30篇
  1977年   36篇
  1976年   34篇
  1975年   45篇
  1974年   23篇
  1973年   40篇
  1971年   16篇
排序方式: 共有3824条查询结果,搜索用时 31 毫秒
1.
2.
3.
Taking inspiration from yeast alcohol dehydrogenase (yADH), a benzimidazolium (BI+) organic hydride‐acceptor domain has been coupled with a 1,10‐phenanthroline (phen) metal‐binding domain to afford a novel multifunctional ligand ( L BI+) with hydride‐carrier capacity ( L BI++H?? L BIH). Complexes of the type [Cp*M( L BI)Cl][PF6]2 (M=Rh, Ir) have been made and fully characterised by cyclic voltammetry, UV/Vis spectroelectrochemistry, and, for the IrIII congener, X‐ray crystallography. [Cp*Rh( L BI)Cl][PF6]2 catalyses the transfer hydrogenation of imines by formate ion in very goods yield under conditions where the corresponding [Cp*Ir( L BI)Cl][PF6] and [Cp*M(phen)Cl][PF6] (M=Rh, Ir) complexes are almost inert as catalysts. Possible alternatives for the catalysis pathway are canvassed, and the free energies of intermediates and transition states determined by DFT calculations. The DFT study supports a mechanism involving formate‐driven Rh?H formation (90 kJ mol?1 free‐energy barrier), transfer of hydride between the Rh and BI+ centres to generate a tethered benzimidazoline (BIH) hydride donor, binding of imine substrate at Rh, back‐transfer of hydride from the BIH organic hydride donor to the Rh‐activated imine substrate (89 kJ mol?1 barrier), and exergonic protonation of the metal‐bound amide by formic acid with release of amine product to close the catalytic cycle. Parallels with the mechanism of biological hydride transfer in yADH are discussed.  相似文献   
4.
4‐Nitrobenzoic acid (PNBA) has proved to be a useful ligand for the preparation of metal complexes but the known structures of the alkali metal salts of PNBA do not include the rubidium salt. The structures of the isomorphous potassium and rubidium polymeric coordination complexes with PNBA, namely poly[μ2‐aqua‐aqua‐μ3‐(4‐nitrobenzoato)‐potassium], [K(C7H4N2O2)(H2O)2]n, (I), and poly[μ3‐aqua‐aqua‐μ5‐(4‐nitrobenzoato)‐rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II), have been determined. In (I), the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O‐atom donors, a single bridging carboxylate O‐atom donor and two water molecules, one of which is bridging. In Rb complex (II), the same basic MO6 coordination is found in the repeat unit, but it is expanded to RbO9 through a slight increase in the accepted Rb—O bond‐length range and includes an additional Rb—Ocarboxylate bond, completing a bidentate O,O′‐chelate interaction, and additional bridging Rb—Onitro and Rb—Owater bonds. The comparative K—O and Rb—O bond‐length ranges are 2.7352 (14)–3.0051 (14) and 2.884 (2)–3.182 (2) Å, respectively. The structure of (II) is also isomorphous, as well as isostructural, with the known structure of the nine‐coordinate caesium 4‐nitrobenzoate analogue, (III), in which the Cs—O bond‐length range is 3.047 (4)–3.338 (4) Å. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups, as well as extensions along c through the para‐related carboxylate group, giving a two‐dimensional structure in (I). In (II) and (III), three‐dimensional structures are generated through additional bridges involving the nitro and water O atoms. In all three structures, the two water molecules are involved in similar intra‐polymer O—H...O hydrogen‐bonding interactions to both carboxylate and water O‐atom acceptors. A comparison of the varied coordination behaviour of the full set of Li–Cs salts with 4‐nitrobenzoic acid is also made.  相似文献   
5.
The Li, Rb and Cs complexes with the herbicide (2,4‐dichlorophenoxy)acetic acid (2,4‐D), namely poly[[aqua[μ3‐(2,4‐dichlorophenoxy)acetato‐κ3O1:O1:O1′]lithium(I)] dihydrate], {[Li(C8H5Cl2O3)(H2O)]·2H2O}n, (I), poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ4O1:O1′:O1′,Cl2]dirubidium(I)], [Rb2(C8H5Cl2O3)2(H2O)]n, (II), and poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ5O1:O1′:O1′,O2,Cl2]dicaesium(I)], [Cs2(C8H5Cl2O3)2(H2O)]n, (III), respectively, have been determined and their two‐dimensional polymeric structures are described. In (I), the slightly distorted tetrahedral LiO4 coordination involves three carboxylate O‐atom donors, of which two are bridging, and a monodentate aqua ligand, together with two water molecules of solvation. Conjoined six‐membered ring systems generate a one‐dimensional coordination polymeric chain which extends along b and interspecies water O—H...O hydrogen‐bonding interactions give the overall two‐dimensional layers which lie parallel to (001). In hemihydrate complex (II), the irregular octahedral RbO5Cl coordination about Rb+ comprises a single bridging water molecule which lies on a twofold rotation axis, a bidentate Ocarboxy,Cl‐chelate interaction and three bridging carboxylate O‐atom bonding interactions from the 2,4‐D ligand. A two‐dimensional coordination polymeric layer structure lying parallel to (100) is formed through a number of conjoined cyclic bridges, including a centrosymmetric four‐membered Rb2O2 ring system with an Rb...Rb separation of 4.3312 (5) Å. The coordinated water molecule forms intralayer aqua–carboxylate O—H...O hydrogen bonds. Complex (III) comprises two crystallographically independent (Z′ = 2) irregular CsO6Cl coordination centres, each comprising two O‐atom donors (carboxylate and phenoxy) and a ring‐substituted Cl‐atom donor from the 2,4‐D ligand species in a tridentate chelate mode, two O‐atom donors from bridging carboxylate groups and one from a bridging water molecule. However, the two 2,4‐D ligands are conformationally very dissimilar, with one phenoxyacetate side chain being synclinal and the other being antiperiplanar. The minimum Cs...Cs separation is 4.4463 (5) Å. Structure extension gives coordination polymeric layers which lie parallel to (001) and are stabilized by intralayer water–carboxylate O—H...O hydrogen bonds.  相似文献   
6.
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five Si states (i = 0–4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called “high-valent scheme”—where, for example, the Mn oxidation states in the S2 state are assigned as III, IV, IV, IV—the competing “low-valent scheme” that differs by a total of two metal unpaired electrons (i.e. III, III, III, IV in the S2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55Mn ENDOR data of the S2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S0 (III, III, III, IV) to S3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster.  相似文献   
7.
Surfaced enhanced Raman scattering (SERS) nanotags operating with 1280 nm excitation were constructed from reporter molecules selected from a library of 14 chalcogenopyrylium dyes containing phenyl, 2-thienyl, and 2-selenophenyl substituents and a surface of hollow gold nanoshells (HGNs). These 1280 SERS nanotags are unique as they have multiple chalcogen atoms available which allow them to adsorb strongly onto the gold surface of the HGN thus producing exceptional SERS signals at this long excitation wavelength. Picomolar limits of detection (LOD) were observed and individual reporters of the library were identified by principal component analysis and classified according to their unique structure and SERS spectra.  相似文献   
8.
Multiplex optical detection in live cells is challenging due to overlapping signals and poor signal-to-noise associated with some chemical reporters. To address this, the application of spectral phasor analysis to stimulated Raman scattering (SRS) microscopy for unmixing three bioorthogonal Raman probes within cells is reported. Triplex detection of a metallacarborane using the B−H stretch at 2480–2650 cm−1, together with a bis-alkyne and deuterated fatty acid can be achieved within the cell-silent region of the Raman spectrum. When coupled to imaging in the high-wavenumber region of the cellular Raman spectrum, nine discrete regions of interest can be spectrally unmixed from the hyperspectral SRS dataset, demonstrating a new capability in the toolkit of multiplexed Raman imaging of live cells.  相似文献   
9.
Quantum-mechanical-based computational design of molecular catalysts requires accurate and fast electronic structure calculations to determine and predict properties of transition-metal complexes. For Zr-based molecular complexes related to polyethylene catalysis, previous evaluation of density functional theory (DFT) and wavefunction methods only examined oxides and halides or select reaction barrier heights. In this work, we evaluate the performance of DFT against experimental redox potentials and bond dissociation enthalpies (BDEs) for zirconocene complexes directly relevant to ethylene polymerization catalysis. We also examined the ability of DFT to compute the fourth atomic ionization potential of zirconium and the effect the basis set selection has on the ionization potential computed with CCSD(T). Generally, the atomic ionization potential and redox potentials are very well reproduced by DFT, but we discovered relatively large deviations of DFT-calculated BDEs compared to experiment. However, evaluation of BDEs with CCSD(T) suggests that experimental values should be revisited, and our CCSD(T) values should be taken as most accurate.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号