首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   495篇
  免费   4篇
化学   258篇
晶体学   1篇
力学   64篇
数学   125篇
物理学   51篇
  2021年   11篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   13篇
  2015年   13篇
  2014年   13篇
  2013年   14篇
  2012年   24篇
  2011年   28篇
  2010年   21篇
  2009年   19篇
  2008年   29篇
  2007年   36篇
  2006年   22篇
  2005年   21篇
  2004年   23篇
  2003年   17篇
  2002年   12篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   12篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   8篇
  1985年   10篇
  1984年   9篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
  1958年   1篇
排序方式: 共有499条查询结果,搜索用时 15 毫秒
1.
2.
Morphological measurements in 3D for pore space characterization (connectivity pore-body/throat classification, shape factors, virtual fluid intrusion) are based on computed intensive digital-thinning operations for skeletonization and medial axis extraction from 3D digital images. We present an alternative method that is measurably faster and allows sub-voxel definition of the pore space network. The method allows extracting—based on morphological considerations only—the centered and shortest stream-lines—i.e., the paths—to follow in order to go through the pore space from one given point to another and to exit. In addition the method penalizes long and narrow pore-throats in favor of short stubby/ones—i.e., it has a built-in exemplification capacity. It exploits well-established mathematical methods successfully applied in medical endoscopy.  相似文献   
3.
This paper represents a first attempt to derive one-dimensional models with non-convex strain energy starting from “genuine” three-dimensional, nonlinear, compressible, elasticity theory. Following the usual method of obtaining beam theories, we show here for a constrained kinematics appropriate for long cylinders governed by a polyconvex, objective, stored energy function, that the bar model originally proposed by Ericksen [3] is obtainable but enriched by an additional term in the strain gradient. This term, characteristic of nonsimple grade-2 materials, penalizes interfacial energies and makes single-interface two-phase solutions preferred. The resulting model has been proposed by a number of authors to describe the phenomenon of necking and cold drawing in polymeric fibers and, here, we discuss its suitability to interpret also the elastic-plastic behavior of metallic tensile bars under monotone loading.  相似文献   
4.
Bone adaptation models are often solved in the forward direction, meaning that the response of bone to a given set of loads is determined by running a bone tissue adaptation model. The model is generally solved using a numerical technique such as the finite element model. Conversely, one may be interested in the loads that have resulted in a given state of bone. This is the inverse of the former problem. Even though the inverse problem has several applications, it has not received as much attention as the forward problem, partly because solving the inverse problem is more difficult. A nonlinear system identification technique is needed for solving the inverse problem. In this study, we use artificial neural networks for prediction of tissue adaptation loads from a given density distribution of trabecular bone. It is shown that the proposed method can successfully identify the loading parameters from the density distribution of the tissue. Two important challenges for all load prediction algorithms are the non-uniqueness of the solution of the inverse problem and the inaccuracies in the measurement of the morphology of the tissue. Both challenges are studied, and it is shown that the load prediction technique proposed in this paper can overcome both.  相似文献   
5.
We prove a well-posedness result for two pseudo-parabolic problems, which can be seen as two models for the same electrical conduction phenomenon in heterogeneous media, neglecting the magnetic field. One of the problems is the concentration limit of the other one, when the thickness of the dielectric inclusions goes to zero. The concentrated problem involves a transmission condition through interfaces, which is mediated by a suitable Laplace-Beltrami type equation.  相似文献   
6.
7.
8.
We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry–Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured ?125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.  相似文献   
9.
10.
The rigidity of a body usually is characterized by the kinematical assumption that the mutual distance between any two of its particles remains unaltered in any possible deformation. However, from this alone nothing can be said about the internal contact forces exerted between adjacent sub-bodies. Therefore, the determination and form of an internal state of stress for a rigid body is problematical. Here, we will show that by considering such a kinematical characterization as an internal constraint for an elastic body, the constrained body inherits the mechanical structure of the elastic parent theory, i.e., the internal constraint generates an associated set of Lagrange multiplier fields which can be interpreted as an internal constraint reaction pseudo-stress field with the same structure as the state of stress in the parent elastic body. Thus, although the final deformation is the same for both the rigid body and the rigidly constrained elastic body, the latter corresponds to a richer model and, to emphasize this distinction, we refer to it as a quasi-rigid body. While in equilibrium the pseudo-stress field of a quasi-rigid body will satisfy equations identical to the equilibrium equations for the stress field in the elastic parent theory, such equations are not, in general, sufficient to assure uniqueness. In order to overcome this indeterminacy, we consider the quasi-rigid body as the limit of a sequence of deformable bodies, where each member of the sequence is identified by a material parameter such that, as this parameter tends to infinity, the body to which it refers is rigidified. Our approach is variational, i.e., we consider a sequence of minimization problems for hyperelastic bodies whose elastic strain energy is multiplied by a penalty term, say 1/ε . As ε→?0, body distortions are more and more penalized so that the sequence of the displacement fields tends to a rigid displacement field, whereas the sequence of the associated stress fields tends to a definite non-zero limit. It will be shown that among all pseudo-stress fields that satisfy the equilibrium equations for the quasi-rigid body, the unique limit of the sequence as ε→0 minimizes a functional analogous to the complementary energy functional in classical linearized elasticity. This result permits its unique determination without having to consider the whole sequence of penalty problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号