首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1353篇
  免费   66篇
  国内免费   7篇
化学   841篇
晶体学   6篇
力学   60篇
数学   316篇
物理学   203篇
  2023年   10篇
  2022年   19篇
  2021年   42篇
  2020年   52篇
  2019年   21篇
  2018年   30篇
  2017年   22篇
  2016年   68篇
  2015年   60篇
  2014年   78篇
  2013年   83篇
  2012年   95篇
  2011年   118篇
  2010年   81篇
  2009年   63篇
  2008年   94篇
  2007年   87篇
  2006年   61篇
  2005年   58篇
  2004年   51篇
  2003年   37篇
  2002年   29篇
  2001年   15篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   13篇
  1996年   13篇
  1995年   6篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1985年   11篇
  1984年   7篇
  1983年   8篇
  1982年   2篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
  1972年   1篇
  1964年   1篇
  1916年   1篇
  1914年   1篇
  1899年   1篇
排序方式: 共有1426条查询结果,搜索用时 62 毫秒
1.
2.
ABSTRACT

The new macrocyclic ligand L (28,29-dimethoxy-27-oxa-8,11,14,17,25,26-hexaazatetracyclo[22.2.1.1(2,6).1(19,23)]nonacosa-2,4,6(28),19,21,23(29),24,26(1)-octaene) has been synthesised. It contains a tetramine chain and the 2,5-bis(2-methoxy-3-metyl-phenyl)-1,3,4-oxadiazole (PPD-OMe) chromophore, acting as coordinating and sensing units, respectively.

The fluorescent emission of L depends on the pH being highly fluorescent at pH = 2 and not emitting from pH >10. The studies highlighted that L is a PET mediated emitting chemosensor, being the PET effect regulated by the degree of the tetraamine protonation.

L coordinates metal ions (Cu(II), Zn(II) and Cd(II)) in water giving rise to an OFF-ON fluorescent response for the presence of Zn(II) ion thus signalling its presence in the medium. This response is particularly notable at pH = 9 allowing to extend the Zn(II) sensing also in the alkaline pH field.  相似文献   
3.
4.
5.
Cannabis sativa L. is a source of over 150 active compounds known as phytocannabinoids that are receiving renewed interest due to their diverse pharmacologic activities. Indeed, phytocannabinoids mimic the endogenous bioactive endocannabinoids effects through activation of CB1 and CB2 receptors widely described in the central nervous system and peripheral tissues. All phytocannabinoids have been studied for their protective actions towards different biological mechanisms, including inflammation, immune response, oxidative stress that, altogether, result in an inhibitory activity against the carcinogenesis. The role of the endocannabinoid system is not yet completely clear in cancer, but several studies indicate that cannabinoid receptors and endogenous ligands are overexpressed in different tumor tissues. Recently, in vitro and in vivo evidence support the effectiveness of phytocannabinoids against various cancer types, in terms of proliferation, metastasis, and angiogenesis, actions partially due to their ability to regulate signaling pathways critical for cell growth and survival. The aim of this review was to report the current knowledge about the action of phytocannabinoids from Cannabis sativa L. against cancer initiation and progression with a specific regard to brain, breast, colorectal, and lung cancer as well as their possible use in the therapies. We will also report the known molecular mechanisms responsible for such positive effects. Finally, we will describe the actual therapeutic options for Cannabis sativa L. and the ongoing clinical trials.  相似文献   
6.
The enantioselective synthesis of α-thiocarboxylic acids by biocatalytic dynamic kinetic resolution (DKR) of nitrile precursors exploiting nitrilase enzymes is described. A panel of 35 nitrilase biocatalysts were screened and enzymes Nit27 and Nit34 were found to catalyse the DKR of racemic α-thionitriles under mild conditions, affording the corresponding carboxylic acids with high conversions and good-to-excellent ee. The ammonia produced in situ during the biocatalytic transformation favours the racemization of the nitrile enantiomers and, in turn, the DKR without the need of any external additive base.  相似文献   
7.
Arene ruthenium(II) complexes bearing the cyclic amines RuCl26-p-cymene)(pyrrolidine)] ( 1 ), [RuCl26-p-cymene)(piperidine)] ( 2 ), and [RuCl26-p-cymene)(peridroazepine)] ( 3 ) were successfully synthesized. Complexes 1 – 3 were fully characterized by means of Fourier transform infrared, UV–visible, and NMR spectroscopy, elemental analysis, cyclic voltammetry, computational methods, and one of the complexes was further studied by single crystal X-ray crystallography. These compounds were evaluated as catalytic precursors for ring-opening metathesis polymerization (ROMP) of norbornene (NBE) and atom-transfer radical polymerization (ATRP) of methyl methacrylate (MMA). NBE polymerization via ROMP was evaluated using complexes 1 – 3 as precatalysts in the presence of ethyl diazoacetate (EDA) under different [NBE]/[EDA]/[Ru] ratios, temperatures (25 and 50°C), and reaction times (5–60 min). The highest yields of polyNBE were obtained with [NBE]/[EDA]/[Ru] = 5000/28/1 for 60 min at 50°C. MMA polymerization via ATRP was conducted using 1 – 3 as catalysts in the presence of ethyl-α-bromoisobutyrate (EBiB) as initiator. The catalytic tests were evaluated as a function of the reaction time using the initial molar ratio of [MMA]/[EBiB]/[Ru] = 1000/2/1 at 95°C. The increase in molecular weight as function of time indicates that complexes 1–3 were able to mediate the MMA polymerization with an acceptable rate and some level of control. Differences in the rate of polymerization were observed in the order 3 > 2 > 1 for the ROMP and ATRP.  相似文献   
8.
9.
10.
Manufactured globally on industrial scale, cyclodextrins (CD) are cyclic oligosaccharides produced by enzymatic conversion of starch. Their typical structure of truncated cone can host a wide variety of guest molecules to create inclusion complexes; indeed, we daily use CD as unseen components of food, cosmetics, textiles and pharmaceutical excipients. The synthesis of active material composites from CD resources can enable or enlarge the effective utilization of these products in the battery industry with some economical as well as environmental benefits. New and simple strategies are here presented for the synthesis of nanostructured silicon and sulfur composite materials with carbonized hyper cross-linked CD (nanosponges) that show satisfactory performance as high-capacity electrodes. For the sulfur cathode, the mesoporous carbon host limits polysulfide dissolution and shuttle effects and guarantees stable cycling performance. The embedding of silicon nanoparticles into the carbonized nanosponge allows to achieve high capacity and excellent cycling performance. Moreover, due to the high surface area of the silicon composite, the characteristics at the electrode/electrolyte interface dominate the overall electrochemical reversibility, opening a detailed analysis on the behavior of the material in different electrolytes. We show that the use of commercial LP30 electrolyte causes a larger capacity fade, and this is associated with different solid electrolyte interface layer formation and it is also demonstrated that fluoroethylene carbonate addition can significantly increase the capacity retention and the overall performance of our nanostructured Si/C composite in both ether-based and LP30 electrolytes. As a result, an integration of the Si/C and S/C composites is proposed to achieve a complete lithiated Si−S cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号