首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   2篇
  国内免费   4篇
化学   4篇
力学   3篇
数学   27篇
物理学   28篇
  2021年   1篇
  2020年   3篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   9篇
  2010年   8篇
  2009年   6篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2004年   4篇
  2003年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1975年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
1.
We develop a high order numerical boundary condition for compressible inviscid flows involving complex moving geometries. It is based on finite difference methods on fixed Cartesian meshes which pose a challenge that the moving boundaries intersect the grid lines in an arbitrary fashion. Our method is an extension of the so-called inverse Lax–Wendroff procedure proposed in [17] for conservation laws in static geometries. This procedure helps us obtain normal spatial derivatives at inflow boundaries from Lagrangian time derivatives and tangential derivatives by repeated use of the Euler equations. Together with high order extrapolation at outflow boundaries, we can impose accurate values of ghost points near the boundaries by a Taylor expansion. To maintain high order accuracy in time, we need some special time matching technique at the two intermediate Runge–Kutta stages. Numerical examples in one and two dimensions show that our boundary treatment is high order accurate for problems with smooth solutions. Our method also performs well for problems involving interactions between shocks and moving rigid bodies.  相似文献   
2.
We develop a new hierarchical reconstruction (HR) method  and  for limiting solutions of the discontinuous Galerkin and finite volume methods up to fourth order of accuracy without local characteristic decomposition for solving hyperbolic nonlinear conservation laws on triangular meshes. The new HR utilizes a set of point values when evaluating polynomials and remainders on neighboring cells, extending the technique introduced in Hu, Li and Tang [9]. The point-wise HR simplifies the implementation of the previous HR method which requires integration over neighboring cells and makes HR easier to extend to arbitrary meshes. We prove that the new point-wise HR method keeps the order of accuracy of the approximation polynomials. Numerical computations for scalar and system of nonlinear hyperbolic equations are performed on two-dimensional triangular meshes. We demonstrate that the new hierarchical reconstruction generates essentially non-oscillatory solutions for schemes up to fourth order on triangular meshes.  相似文献   
3.
Semi-Lagrangian (SL) methods have been very popular in the Vlasov simulation community , , , , , ,  and . In this paper, we propose a new Strang split SL discontinuous Galerkin (DG) method for solving the Vlasov equation. Specifically, we apply the Strang splitting for the Vlasov equation [6], as a way to decouple the nonlinear Vlasov system into a sequence of 1-D advection equations, each of which has an advection velocity that only depends on coordinates that are transverse to the direction of propagation. To evolve the decoupled linear equations, we propose to couple the SL framework with the semi-discrete DG formulation. The proposed SL DG method is free of time step restriction compared with the Runge–Kutta DG method, which is known to suffer from numerical time step limitation with relatively small CFL numbers according to linear stability analysis. We apply the recently developed positivity preserving (PP) limiter [37], which is a low-cost black box procedure, to our scheme to ensure the positivity of the unknown probability density function without affecting the high order accuracy of the base SL DG scheme. We analyze the stability and accuracy properties of the SL DG scheme by establishing its connection with the direct and weak formulations of the characteristics/Lagrangian Galerkin method [23]. The quality of the proposed method is demonstrated via basic test problems, such as linear advection and rigid body rotation, and via classical plasma problems, such as Landau damping and the two stream instability.  相似文献   
4.
In [16], [17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16], [17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported.  相似文献   
5.
In [J. Qiu, C.-W. Shu, Runge–Kutta discontinuous Galerkin method using WENO limiters, SIAM Journal on Scientific Computing 26 (2005) 907–929], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge–Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two-dimensional problems on unstructured meshes, with the goal of obtaining a robust and high order limiting procedure to simultaneously obtain uniform high order accuracy and sharp, nonoscillatory shock transition for RKDG methods. Numerical results are provided to illustrate the behavior of this procedure.  相似文献   
6.
成娟  舒其望 《计算数学》2020,42(3):261-278
本文对可压缩流体力学高精度拉格朗日格式及其保正性质近年来的发展给出回顾与综述.文中分别介绍了一维、二维可压缩流体力学方程中心型拉格朗日格式的设计步骤,回顾了高精度拉格朗日格式以及高精度保正拉格朗日格式的研究进展.  相似文献   
7.
We consider the enhancement of accuracy, by means of a simple post-processing technique, for finite element approximations to transient hyperbolic equations. The post-processing is a convolution with a kernel whose support has measure of order one in the case of arbitrary unstructured meshes; if the mesh is locally translation invariant, the support of the kernel is a cube whose edges are of size of the order of only. For example, when polynomials of degree are used in the discontinuous Galerkin (DG) method, and the exact solution is globally smooth, the DG method is of order in the -norm, whereas the post-processed approximation is of order ; if the exact solution is in only, in which case no order of convergence is available for the DG method, the post-processed approximation converges with order in , where is a subdomain over which the exact solution is smooth. Numerical results displaying the sharpness of the estimates are presented.

  相似文献   

8.
9.
In this paper we introduce a high-order discontinuous Galerkin method for two-dimensional incompressible flow in the vorticity stream-function formulation. The momentum equation is treated explicitly, utilizing the efficiency of the discontinuous Galerkin method. The stream function is obtained by a standard Poisson solver using continuous finite elements. There is a natural matching between these two finite element spaces, since the normal component of the velocity field is continuous across element boundaries. This allows for a correct upwinding gluing in the discontinuous Galerkin framework, while still maintaining total energy conservation with no numerical dissipation and total enstrophy stability. The method is efficient for inviscid or high Reynolds number flows. Optimal error estimates are proved and verified by numerical experiments.  相似文献   
10.
The entropy solutions of the compressible Euler equations satisfy a minimum principle for the specific entropy (Tadmor in Appl Numer Math 2:211–219, 1986). First order schemes such as Godunov-type and Lax-Friedrichs schemes and the second order kinetic schemes (Khobalatte and Perthame in Math Comput 62:119–131, 1994) also satisfy a discrete minimum entropy principle. In this paper, we show an extension of the positivity-preserving high order schemes for the compressible Euler equations in Zhang and Shu (J Comput Phys 229:8918–8934, 2010) and Zhang et?al. (J Scientific Comput, in press), to enforce the minimum entropy principle for high order finite volume and discontinuous Galerkin (DG) schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号