首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
化学   1篇
数学   36篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
Birgin  E. G.  Martínez  J. M.  Ramos  A. 《Numerical Algorithms》2021,86(3):1165-1188
Numerical Algorithms - In many engineering applications, it is necessary to minimize smooth functions plus penalty (or regularization) terms that violate smoothness and convexity. Specific...  相似文献   
2.
Two problems related to packing identical rectangles within a polyhedron are tackled in the present work. Rectangles are allowed to differ only by horizontal or vertical translations and possibly 90° rotations. The first considered problem consists in packing as many identical rectangles as possible within a given polyhedron, while the second problem consists in finding the smallest polyhedron of a given type that accommodates a fixed number of identical rectangles. Both problems are modeled as mixed integer programming problems. Symmetry-breaking constraints that facilitate the solution of the MIP models are introduced. Numerical results are presented.  相似文献   
3.
Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell–Hestenes–Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.  相似文献   
4.
The problem of packing ellipsoids in the three-dimensional space is considered in the present work. The proposed approach combines heuristic techniques with the resolution of recently introduced nonlinear programming models in order to construct solutions with a large number of ellipsoids. The introduced approach is able to pack identical and non-identical ellipsoids within a variety of containers. Moreover, it allows the inclusion of additional positioning constraints. This fact makes the proposed approach suitable for constructing large-scale solutions with specific positioning constraints in which density may not be the main issue. Numerical experiments illustrate that the introduced approach delivers good quality solutions with a computational cost that scales linearly with the number of ellipsoids; and solutions with more than a million ellipsoids are exhibited.  相似文献   
5.
Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented. The authors were supported by PRONEX - CNPq / FAPERJ E-26 / 171.164/2003 - APQ1, FAPESP (Grants 2001/04597-4, 2002/00094-0, 2003/09169-6, 2002/00832-1 and 2005/56773-1) and CNPq.  相似文献   
6.
Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a hybrid heuristic—based on the CGRASP and GENCAN methods—for finding approximate solutions for continuous global optimization problems subject to box constraints. Experimental results illustrate the relative effectiveness of CGRASP–GENCAN on a set of benchmark multimodal test functions.  相似文献   
7.
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.  相似文献   
8.
Given an algorithm A for solving some mathematical problem based on the iterative solution of simpler subproblems, an outer trust-region (OTR) modification of A is the result of adding a trust-region constraint to each subproblem. The trust-region size is adaptively updated according to the behavior of crucial variables. The new subproblems should not be more complex than the original ones, and the convergence properties of the OTR algorithm should be the same as those of Algorithm A. In the present work, the OTR approach is exploited in connection with the “greediness phenomenon” of nonlinear programming. Convergence results for an OTR version of an augmented Lagrangian method for nonconvex constrained optimization are proved, and numerical experiments are presented.  相似文献   
9.
In this study we deal with the two-dimensional non-guillotine cutting problem of how to cut a set of larger rectangular objects to a set of smaller rectangular items in exactly a demanded number of pieces. We are concerned with the special case of the problem in which the non-used material of the cutting patterns (objects leftovers) may be used in the future, for example if it is large enough to fulfill future item demands. Therefore, the problem is seen as a two-dimensional non-guillotine cutting/packing problem with usable leftovers, also known in the literature as a two-dimensional residual bin-packing problem. We use multilevel mathematical programming models to represent the problem appropriately, which basically consists of cutting the ordered items using a set of objects of minimum cost, among all possible solutions of minimum cost, choosing one that maximizes the value of the usable leftovers, and, among them, selecting one that minimizes the number of usable leftovers. Because of special characteristics of these multilevel models, they can be reformulated as one-level mixed integer programming (MIP) models. Illustrative numerical examples are presented and analysed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号