首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
力学   6篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.

Dielectric elastomer generators (DEGs) are soft electrostatic generators based on low-cost electroactive polymer materials. These devices have attracted the attention of the marine energy community as a promising solution to implement economically viable wave energy converters (WECs). This paper introduces a hardware-in-the-loop (HIL) simulation framework for a class of WECs that combines the concept of the oscillating water columns (OWCs) with the DEGs. The proposed HIL system replicates in a laboratory environment the realistic operating conditions of an OWC/DEG plant, while drastically reducing the experimental burden compared to wave tank or sea tests. The HIL simulator is driven by a closed-loop real-time hydrodynamic model that is based on a novel coupling criterion which allows rendering a realistic dynamic response for a diversity of scenarios, including large scale DEG plants, whose dimensions and topologies are largely different from those available in the HIL setup. A case study is also introduced, which simulates the application of DEGs on an OWC plant installed in a mild real sea laboratory test-site. Comparisons with available real sea-test data demonstrated the ability of the HIL setup to effectively replicate a realistic operating scenario. The insights gathered on the promising performance of the analysed OWC/DEG systems pave the way to pursue further sea trials in the future.

  相似文献   
2.
3.
Nonlinear Dynamics - Dielectric elastomer generators (DEGs) are a promising option for the implementation of affordable and reliable sea wave energy converters (WECs), as they show considerable...  相似文献   
4.
This paper introduces a model-based control strategy for a wave energy converter (WEC) based on dielectric elastomer generators (DEGs), i.e. a device that can convert the energy of ocean waves into electricity by employing deformable elastomeric transducers with variable capacitance. The analysed system combines the concept of oscillating water column WEC with an inflated circular diaphragm DEG (ICD-DEG). The device features strongly nonlinear dynamics due to the ICD-DEG electro-hyperelastic response and the compressibility of the air volume comprised between the water column and the ICD-DEG, while the hydrodynamic loads can be approximated as linear. The optimal control solution that maximises the power extraction of the device is numerically investigated in the case of monochromatic waves over the typical frequency and amplitude ranges of sea waves. The more realistic case of panchromatic waves is also analysed through the implementation, in simulation environment, of a real-time controller. This regulator is based on a simple sub-optimal control logic that is deduced from the monochromatic case. The performance of the proposed control strategy is illustrated in comparison with unoptimised algorithms.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号