首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
力学   1篇
  2014年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
In heat transport devices such as oscillating heat pipe (OHP), dryout phenomena is very important and avoided in order to give the optimum performance. However, from the previous studies (including our studies), the dryout phenomena in OHP and its mechanism are still unclear. In our studies of OHP (Senjaya and Inoue in Appl Thermal Eng 60:251–255, 2013; Int J Heat Mass Transfer 60:816–824, 2013; Int J Heat Mass Transfer 60:825–835, 2013), we introduced the importance and roles of liquid film in the operating principle of OHP. In our previous simulation, the thickness of liquid film was assumed to be uniform along a vapor plug. Then, dryout never occurred because there was the liquid transfer from the liquid film in the cooling section to that in the heating section. In this research, the liquid film is not treated uniformly but it is meshed similarly with the vapor plugs and liquid slugs. All governing equations are also solved in each control volume of liquid film. The simulation results show that dryout occurs in the simulation without bubble generation and growth. Dryout is started in the middle of vapor plug, because the liquid supply from the left and right liquid slugs cannot reach until the liquid film in the middle of vapor plug, and propagates to the left and right sides of a vapor plug. By inserting the bubble generation and growth phenomena, dryout does not occur because the wall of heating section is always wetted during the bubble growth and the thickness of liquid film is almost constant. The effects of meshing size of liquid film and wall temperature of heating section are also investigated. The results show that the smaller meshing size, the smaller liquid transfer rate and the faster of dryout propagation. In the OHP with higher wall temperature of heating section, dryout and its propagation also occur faster.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号