首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
力学   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
A semi-analytic numerical scheme has been developed to solve the one-dimensional, moving boundary phase change problem with time-dependent boundary conditions. Locally analytic, approximate solutions are developed for the position of the moving boundary, and for temperature distribution. Set of discrete equations are obtained by applying these solutions over space-time nodes, and by imposing continuity of temperature and heat flux. Application of this so-called nodal integral approach to the nonlinear Stefan problem shows that the scheme is Ox 2), and that it predicts the position of the moving boundary and the temperature distribution within the domain very accurately. For example, with as little as two nodes in the spatial domain, the location of the moving boundary for the case of an exponentially increasing surface temperature on the boundary, after one dimensionless time unit, is found with an error of less than 1%. In addition to large size nodes in space, this scheme also allows the use of very large size time steps. Comparison of numerical results with reference solutions is presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号