首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   11篇
力学   4篇
物理学   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
Kumari  Nitu  Mohan  Nishith 《Nonlinear dynamics》2020,100(1):763-784
Nonlinear Dynamics - In the present work, we have studied a diffusive tritrophic food chain model in which the species at each trophic level interact in accordance with Crowley–Martin...  相似文献   
2.
As a part of our investigations to unfold the chemistry of calixresorcinarene, we have focused on the formation of inclusion complex of a poorly soluble (43 μg ml?1 at pH 7) drug mycophenolate mofetil (MMF) an immunosuppressive agent and an inosine monophosphate dehydrogenase (IMPDH) inhibitor with para sulphonatocalix[4]resorcinarene (PSC4R). The complete complexation of the drug was achieved after 48 h of stirring with para sulphonatocalix[4]resorcinarene(PSC[4]R) in water and evaporation of water yield the solid complex. The interaction between para sulphonatocalix[4]resorcinarene(PSC[4]R) and MMF in solid state inclusion complexes was accomplished by aqueous phase solubility studies, Thermal Analysis, HPLC, PXRD, FT-IR, and UV–Vis spectroscopy. The results of the phase solubility experiments are in good conformity to signify the formation of 2:1 PSC4R: MMF complexes. The purpose of this study was to enhance solubility and resulting in high dissolution rate and bioavailability of this essentially water insoluble drug. The results of the in vivo study shows that there is a remarkable change in the toxicity of the pure drug MMF and complex did not produce any mortality up to 2200 mg kg?1.  相似文献   
3.
This paper describes the production, characteristics, and efficacy of carbon microfibers and carbon nanofibers for the removal of phenol and Pb(2+) from water by adsorption. The first adsorbent produced in the current investigation contained the ammonia (NH(3)) functionalized micron-sized activated carbon fibers (ACF). Alternatively, the second adsorbent consisted of a multiscale web of ACF/CNF, which was prepared by growing carbon nanofibers (CNFs) on activated ACFs via catalytic chemical vapor deposition (CVD) and sonication, which was conducted to remove catalytic particles from the CNF tips and open the pores of the CNFs. The two adsorbents prepared in the present study, ACF and ACF/CNF, were characterized by several analytical techniques, including SEM-EDX and FT-IR. Moreover, the chemical composition, BET surface area, and pore-size distribution of the materials were determined. The hierarchal web of carbon microfibers and nanofibers displayed a greater adsorption capacity for Pb(2+) than ACF. Interestingly, the adsorption capacity of ammonia (NH(3)) functionalized ACFs for phenol was somewhat larger than that of the multiscale ACF/CNF web. Difference in the adsorption capacity of the adsorbents was attributed to differences in the size of the solutes and their reactivity towards ACF and ACF/CNF. The results indicated that ACF-based materials were efficient adsorbents for the removal of inorganic and organic solutes from wastewater.  相似文献   
4.
In the present investigation, we describe some novel calixarene based heterocyclic compounds (5a-5i) in which 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives have been coupled with 5,11,17,23-tetra-tert-butyl-25,27-bis(chlorocarbonyl-methoxy)-26,28-dihydroxy calix[4]arene. All the newly synthesized calixarene based heterocyclic compounds have been characterized by elemental analysis and various spectroscopic methods like FTIR, (1)H NMR, (13)C NMR, and FAB-MS. All the final scaffolds have been subjected to antioxidant activity, in vitro antimicrobial screening against two gram (+ve) bacteria (S. aureus, S. pyogenes), two gram (-ve) bacteria (E. coli, P. aeruginosa) and two fungal strains (C. albicans, A. clavatus) and also have been screened for their antitubercular activity against Mycobacterium tuberculosis H(37)Rv.  相似文献   
5.
Among the various natural polymers, polysaccharides are one of the oldest biopolymers present on the Earth. They play a very crucial role in the survival of both animals and plants. Due to the presence of hydroxyl functional groups in most of the polysaccharides, it is easy to prepare their chemical derivatives. Several polysaccharide derivatives are widely used in a number of industrial applications. The polysaccharides such as cellulose, starch, chitosan, etc., have several applications but due to some distinguished characteristic properties, seaweed polysaccharides are preferred in a number of applications. This review covers published literature on the seaweed polysaccharides, their origin, and extraction from seaweeds, application, and chemical modification. Derivatization of the polysaccharides to impart new functionalities by chemical modification such as esterification, amidation, amination, C-N bond formation, sulphation, acetylation, phosphorylation, and graft copolymerization is discussed. The suitability of extraction of seaweed polysaccharides such as agar, carrageenan, and alginate using ionic solvent systems from a sustainability point of view and future prospects for efficient extraction and functionalization of seaweed polysaccharides is also included in this review article.  相似文献   
6.
The aqua phobic molecules that are practically insoluble in aqueous media demonstrate a staggeringly slow intrinsic dissolution rate. In this work, we exemplify the utility of calixarenes as a tool to form inclusion complexes with Carvedilol (CDL). It is poorly water soluble drug. CDL is a Biopharmaceutical Classification System (BCS) Class II drug and it is a nonselective β-adrenegenic blocking agent with α1-blocking activity. It is mainly used in the management of hypertension. The maximum complexation of the drug was accomplished after 48?h of stirring with para sulphonato calix[4]arene (PSC[4]arene) and para sulphonato calix[6]arene (PSC[6]arene) in water and evaporation of water to acquire solid complexes. The study includes characterisation of both the complexes—physical mixtures of drug and PSC[4]arene and PSC[6]arenes by different methods like Fourier-transform infra red spectroscopy, differential scanning calorimetry and powder X-ray diffraction, proton nuclear magnetic resonance. This studies shows that there is electrostatic interaction between drug and PSC[n]arenes. The complexation was determined by phase solubility study. The prepared complexes exhibited improved in vitro dissolution profile and decreased in vivo acute oral toxicity compared to the pure drug.  相似文献   
7.
Dinitrotoluene (DNT) is a signature material of all nitro‐aromatic explosives including the lethal 2,4,6‐trinitrotoluene (TNT). A clay‐modified reduced graphene oxide (rGO)‐polymer nanocomposite was prepared as sensing electrode for the detection of (DNT) in the aquatic systems. rGO was in situ dispersed in the electro‐conductive N‐doped phenol/formaldehyde polymer and the clay ‘montmorillonite’ was coated on the nanocomposite. The clay, containing iron as one of its mineral components, served as the recognition element for DNT. Tested using electrochemical measurement techniques – cyclic voltammetry and differential pulse voltammetry, the prepared sensing electrode exhibited a low detection limit (0.0016 μM) on signal to noise ratio basis (S/N=3) and excellent linearity (R2=0.997) over 0.02–10 mg L?1 with high sensitivity value (428 μA mM?1 cm?2) for DNT. The electrode showed negligible interference with the gravimetric and volumetric salts commonly present in seawater, and also, with explosive derivatives. The separate tests performed in a simulated seawater confirmed the suitability of the prepared electrode for use in field applications.  相似文献   
8.
A lattice Boltzmann model is developed to simulate the one-dimensional (1D) unsteady state concentration profiles, including breakthrough curves, in a fixed tubular bed of non-porous adsorbent particles. The lattice model solves the 1D time dependent convection–diffusion–reaction equation for an ideal binary gaseous mixture, with solute concentrations at parts per million levels. The model developed in this study is also able to explain the experimental adsortption/desorption data of organic vapours (toluene) on silica gel under varying conditions of temperature, concentrations and flowrates. Additionally, the programming code written for simulating the adsorption breakthrough is modified with minimum changes to successfully simulate a few flow problems, such as Poiseuille flow, Couette flow, and axial dispersion in a tube. The present study provides an alternative numerical approach to solving such types of mass transfer related problems.  相似文献   
9.
Steady shear rheology of a dilute emulsion with viscoelastic inclusions is numerically investigated using direct numerical simulations. Batchelor's formulation for rheology of a viscous emulsion is extended for a viscoelastic system. Viscoelasticity is modeled using the Oldroyd-B constitutive equation. A front-tracking finite difference code is used to numerically determine the drop shape, and solve for the velocity and stress fields. The effective stress of the viscoelastic emulsion has three different components due to interfacial tension, viscosity difference (not considered here) and the drop phase viscoelasticity. The interfacial contributions – first and second normal stress differences and shear stresses – vary with Capillary number in a manner similar to those of a Newtonian system. However the shear viscosity decreases with viscoelasticity at low Capillary numbers, and increases at high Capillary numbers. The first normal stress difference due to interfacial contribution decreases with increasing drop phase viscoelasticity. The first normal stress difference due to the drop phase viscoelasticity is found to have a complex dependence on Capillary and Deborah numbers, in contrast with the linear mixing rule. Drop phase viscoelasticity does not contribute significantly to effective shear viscosity of the emulsion. The total first normal stress difference shows an increase with drop phase viscoelasticity at high Capillary numbers. However at low Capillary numbers, a non-monotonic behavior is observed. The results are explained by examining the stress field and the drop shape.  相似文献   
10.
Density functional theory (DFT) for generalized gradient approximation calculations has been used to study the adsorption of atomic oxygen and water molecules on Ni(1 1 1) and different kind of Ni-Cr(1 1 1) surfaces. The fcc hollow site is energetically the most favorable for atomic oxygen adsorption and on top site is favorable for water adsorption. The Ni-Cr surface has the highest absorption energy for oxygen at 6.86 eV, followed by the hcp site, whereas the absorption energy is 5.56 eV for the Ni surface. The Ni-O bond distance is 1.85 Å for the Ni surface. On the other hand, the result concerning the Ni-Cr surface implies that the bond distances are 1.93-1.95 Å and 1.75 Å for Ni-O and Cr-O, respectively. The surface adsorption energy for water on top site for two Cr atom substituted Ni-Cr surface is 0.85 eV. Oxygen atoms prefer to bond with Cr rather than Ni atoms. Atomic charge analysis demonstrates that charge transfer increases due to the addition of Cr. Moreover, a local density of states (LDOS) study examines the hybridization occurring between the metal d orbital and the oxygen p orbital; the bonding is mainly ionic, and water bonds weakly in both cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号