首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   1篇
力学   8篇
数学   1篇
物理学   3篇
  2017年   1篇
  2016年   2篇
  2012年   2篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  1993年   1篇
排序方式: 共有13条查询结果,搜索用时 203 毫秒
1.
2.
Hydrazo-carbonates are complex compounds and products of the reactions between solutions of metal ion and solutions of hydrazido-carbonic acid. The decomposition of Mg(N2H3COO)2. 2H2O, Ca(N2H3COO)2·H2O and Zn(N2H3COO)2 in inert atmosphere were studied. By classical thermoanalytical methods and data on the composition of the intermediates and final products the mechanisms of the thermal decomposition could not be resolved therefore also evolved gas analysis was used (EGA). The first step of thermal decomposition of Ca and Mg hydrazidocarbonates is dehydration. With the heating the decomposition of the hydrazido-carbonates proceeds under evolution of the ammonia, carbon monoxide and/or nitrogen and carbon dioxide giving as the intermediates for calcium and magnesium compounds the corresponding carbonates oxides as the final products. The zinc compound decomposes to the oxide, ZnO but also zinc cyanamide was detected during to the thermal treatment.  相似文献   
3.
In this paper we propose the time-dependent Hamiltonian form of human biomechanics, as a sequel to our previous work in time-dependent Lagrangian biomechanics [1]. This is the time-dependent generalization of an ‘ordinary’ autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. In our view, this time-dependent energetic approach is much more realistic than the autonomous one. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics. Then we extend it using a powerful geometrical machinery consisting of fibre bundles and jet manifolds associated to the biomechanical configuration manifold. We derive time-dependent, dissipative, Hamiltonian equations and the fitness evolution equation for the general time-dependent human biomechanical system.  相似文献   
4.
In this paper we propose the time-dependent generalization of an ‘ordinary’ autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for a particular movement. This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. By this extension, using techniques from fibre bundles, we defined the biomechanical configuration bundle. On the biomechanical bundle we define vector-fields, differential forms and affine connections, as well as the associated jet manifolds. Using the formalism of jet manifolds of velocities and accelerations, we develop the time-dependent Lagrangian biomechanics. Its underlying geometric evolution is given by the Ricci flow equation.  相似文献   
5.
In this paper, we analyze crowd turbulence from both classical and quantum perspective. We analyze various crowd waves and a collision using crowd macroscopic wave functions. In particular, we will show that nonlinear Schrödinger (NLS) equation is fundamental for quantum turbulence, while its closed-form solutions include shock-waves, solitons, and rogue waves, as well as planar de Broglie’s waves. We start by modeling various crowd flows using classical fluid dynamics, based on Navier–Stokes equations. Then we model turbulent crowd flows using quantum turbulence in Bose–Einstein condensation, based on modified NLS equation.  相似文献   
6.
Nonlinear Dynamics - We propose a two-phase computational biomechanical model for a successful rehabilitation after hip and/or knee replacement surgery. The first phase, conducted before the...  相似文献   
7.
8.
This paper reviews a nonlinear complexity within the Human Biodynamics Engine (HBE), a world-class human neuro-musculoskeletal simulator, developed at the Department of Defense, Australia. The HBE development is based on an anthropomorphic tree of Euclidean motion groups SE(3), with 270 active degrees of freedom, realistic muscular mechanics and hierarchical neural-like control. The HBE is formulated in the fashion of nonlinear dynamics/control of highly complex biophysical and robotic systems and developed for the purpose of neuro-musculoskeletal injury prediction. The following aspects of the HBE development are described: geometrical, dynamical, control, physiological, biomedical, AI, behavioral and complexity. Several simulation examples are provided.  相似文献   
9.
10.
The motivation behind mathematically modeling the human operator is to help explain the response characteristics of the complex dynamical system including the human manual controller. In this paper, we present two different fuzzy logic strategies for human operator and sport modeling: fixed fuzzy-logic inference control and adaptive fuzzy-logic control, including neuro-fuzzy-fractal control. As an application of the presented fuzzy strategies, we present a fuzzy-control based tennis simulator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号