首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
力学   1篇
数学   2篇
  2022年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
This paper describes requirement for wireless transmission of Chaotic Code Division Multiplexed Access (Chaotic CDMA) and it focuses on real-time synchronization algorithm embedded into electronic programmable device. CDMA with quasi-orthogonal codes is used to allow multi-users to transmit simultaneously in the same channel. Since the channel is shared between all users, the receiver system has to cope with channel noise and overall with interference from other users. As a result, one of the main problems of communication with quasi-orthogonal chaotic codes is to implement a real time decoder in presence of noise. Even if set-membership algorithm are efficient in real time synchronization of chaotic discrete generators in the presence of noise, these algorithms require a large memory resource. In this paper, we propose an evolution of set-membership algorithm toward genetic algorithm to be implemented into electronic programmable device. The advantage of genetic algorithm compared with set-membership algorithm is that they require a fixed size of memory.  相似文献   
2.
From the unicity and orthogonality properties of chaotic sequences, it is demonstrated that a sum of N chaotic signals generated from a fixed class of chaotic systems is unique. Consequently, within a framework of a multi-user transmission, it is shown that synchronizing N chaotic carriers that emit simultaneously on the same frequency band is feasible. In this paper, the carriers are generated from Chua’s circuits and are modulated in amplitude by the information signal. Demodulation is ensured by the minimization of a cost function. Numerical simulations show that this synchronization method is robust in presence of noise and allows the integration of a high number of users.  相似文献   
3.

In this article, a distributed formation tracking controller is proposed for Multi-agent systems (MAS) consisting of quadrotors. It is considered that each quadrotor in the MAS only shares its translation position information with its neighbors. Moreover, position information is transmitted at nonuniform and asynchronous time instants. The control system is divided into an outer-loop for the position control and an inner-loop for the attitude control. A continuous-discrete time observer is used in the outer-loop to estimate both position and velocity of the quadrotor and its neighbors using discrete position information it receives. Then, these estimated states are used to design the position controller in order to enable quadrotors to generate the required geometric shape. A finite-time attitude controller is designed to track the desired attitude as dictated by the position controller. Finally, a closed-loop stability analysis of the overall system including nonlinear coupling is performed.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号