首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
化学   31篇
力学   2篇
数学   1篇
物理学   8篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  1999年   1篇
排序方式: 共有42条查询结果,搜索用时 21 毫秒
1.
Abstract

The present work is concerned with the 2D deformation in a nonhomogeneous, isotropic, micropolar, magneto-thermoelastic medium in the context of Lord-Shulman theory as a result of an inclined load. The inclined load is supposed to be a linear combination of normal load and tangential load. Material properties are assumed to be graded in x-direction. Normal mode technique is proposed to obtain the analytical expressions for the temperature field, displacement components, and stresses. These are also calculated numerically and depicted graphically to observe the variations of the considered physical variables.

Communicated by Seonho Cho.  相似文献   
2.
Journal of Solid State Electrochemistry - Surface degradation of steel is one of the key problems of steel end user because of the electrochemical reaction at the steel surface caused by...  相似文献   
3.
Acetalization of glycerol with various aldehydes has been carried out using mesoporous MoO3/SiO2 as a solid acid catalyst. A series of MoO3/SiO2 catalysts with varying MoO3 loadings (1–20 mol%) were prepared by sol–gel technique using ethyl silicate-40 and ammonium heptamolybdate as silica and molybdenum source respectively. The sol–gel derived samples were calcined at 500 °C and characterized using various physicochemical characterization techniques. The XRD of the calcined samples showed the formation of amorphous phase up to 10 mol% MoO3 loading and at higher loading of crystalline α-MoO3 on amorphous silica support. TEM analyses of the materials showed the uniform distribution of MoO3 nanoparticles on amorphous silica support. Raman spectroscopy showed the formation of silicomolybdic acid at low Mo loading and a mixture of α-MoO3 and polymolybdate species at high Mo loadings. Moreover the Raman spectra of intermediate loading samples also suggest the presence of β-MoO3. Acetalization of glycerol with benzaldehyde was carried out using series of MoO3/SiO2 catalysts with varying MoO3 loadings (1–20 mol%). Among the series, MoO3/SiO2 with 20 mol% MoO3 loadings was found to be the most active catalyst in acetalization under mild conditions. Maximum conversion of benzaldehyde (72%) was obtained in 8 h at 100 °C with 60% selectivity for the six-membered acetal using 20% MoO3/SiO2. Interestingly with substituted benzaldehydes under same reaction conditions the conversion of aldehydes decreased with increase in selectivity for six-membered acetals. These results indicate the potential of this catalyst for the acetalization of glycerol for an environmentally benign process.  相似文献   
4.
5.
The synthesis of acylals from structurally diverse aldehydes has been performed in excellent yields under solvent-free conditions using HClO4-SiO2 as a mild, convenient, reusable, and heterogeneous catalyst. The procedure is operationally simple, environmentally benign and has the advantage of enhanced atom utilization. Furthermore, the catalyst can be recovered simply and reused efficiently a number of times without appreciable loss of activity.  相似文献   
6.
Biological membrane fusion is a highly specific and coordinated process as a multitude of vesicular fusion events proceed simultaneously in a complex environment with minimal off-target delivery. In this study, we develop a liposomal fusion model system with specific recognition using lipidated derivatives of a set of four de novo designed heterodimeric coiled coil (CC) peptide pairs. Content mixing was only obtained between liposomes functionalized with complementary peptides, demonstrating both fusogenic activity of CC peptides and the specificity of this model system. The diverse peptide fusogens revealed important relationships between the fusogenic efficacy and the peptide characteristics. The fusion efficiency increased from 20% to 70% as affinity between complementary peptides decreased, (from KF ≈ 108 to 104 M−1), and fusion efficiency also increased due to more pronounced asymmetric role-playing of membrane interacting ‘K’ peptides and homodimer-forming ‘E’ peptides. Furthermore, a new and highly fusogenic CC pair (E3/P1K) was discovered, providing an orthogonal peptide triad with the fusogenic CC pairs P2E/P2K and P3E/P3K. This E3/P1k pair was revealed, via molecular dynamics simulations, to have a shifted heptad repeat that can accommodate mismatched asparagine residues. These results will have broad implications not only for the fundamental understanding of CC design and how asparagine residues can be accommodated within the hydrophobic core, but also for drug delivery systems by revealing the necessary interplay of efficient peptide fusogens and enabling the targeted delivery of different carrier vesicles at various peptide-functionalized locations.

We developed a liposomal fusion model system with specific recognition using a set of heterodimeric coiled coil peptide pairs. This study unravels important structure–fusogenic efficacy relationships of peptide fusogens.  相似文献   
7.

In the present work, we report the catalytic reaction of active methylene compounds with cyclic enol ethers and aryl acetals through oxonium intermediate under solvent-free conditions using heterogeneous solid acid catalysts. Among studied solid acid catalysts, Amberlyst-15 gave excellent yields (35–85%) of alkylated products. The catalyst showed broader substrate scope, and a recyclable catalytic cost-efficient approach of the alkylation was examined on the different types of cyclic enol ethers and aryl acetal.

  相似文献   
8.
Global warming challenges are fueling the demand to develop an efficient catalytic system for the reduction of CO2, which would contribute significantly to the control of climate change. Herein, as-synthesized bismuthoxide-decorated graphene oxide (Bi2O3@GO) was used as an electro/thermal catalyst for CO2 reduction. Bi2O3@GO is found to be distributed uniformly, as confirmed by scanning electron and transmission electron microscopic analysis. The X-ray diffraction (XRD) pattern shows that the Bi2O3 has a β-phase with 23.4 m2 g−1 BET surface area. Significantly, the D and G bands from Raman spectroscopic analysis and their intensity ratio (ID/IG) reveal the increment in defective sites on GO after surface decoration. X-ray photoelectron spectroscopic (XPS) analysis shows clear signals for Bi, C, and O, along with their oxidation states. An ultra-low onset potential (−0.534 V vs. RHE) for the reduction of CO2 on Bi2O3@GO is achieved. Furthermore, potential-dependent (−0.534, −0.734, and −0.934 vs. RHE) bulk electrolysis of CO2 to formate provides Faradaic efficiencies (FE) of approximately 39.72, 61.48, and 83.00 %, respectively. Additionally, in time-dependent electrolysis at a potential of −0.934 versus RHE for 3 and 5 h, the observed FEs are around 84.20 % and 87.17 % respectively. This catalyst is also used for the thermal reduction of CO2 to formate. It is shown that the thermal reduction provides a path for industrial applications, as this catalyst converts a large amount of CO2 to formate (10 mm ).  相似文献   
9.
These days our one of the major challenges is the treatment of polluted wastewater produced by the growing population and industrial activities. The conventional wastewater treatment methods are costly and need to be more advanced. For this reason, membrane technology has been used as an effective wastewater treatment method for many decades due to its high removal power, selectivity, and permeability properties. Biofouling causes a serious concern related to membrane permeability, shortens membrane life, and selectivity. Polymeric membranes are widely used in wastewater treatment due to their good pore-forming ability, higher flexibility, and relatively low costs but are limited to their hydrophobicity property and more susceptible to fouling. Metal oxides nanomaterials are widely used in the formation of polymer nanocomposite membranes because of their hydrophilicity, larger surface area, pore channels, and high toxicity towards pathogenic micro-organisms. In this review, we have discussed the factors affecting membrane biofouling and their conventional and current treatment methods with their limitations. We have also referred to the use of metal oxide nanomaterials, as an antibacterial agent, for the fabrication of polymer nanocomposite membranes and discuss their antibacterial activity with antibiofouling behavior.  相似文献   
10.
A dense hydrogen‐bond network is responsible for the mechanical and structural properties of polysaccharides. Random derivatization alters the properties of the bulk material by disrupting the hydrogen bonds, but obstructs detailed structure–function correlations. We have prepared well‐defined unnatural oligosaccharides including methylated, deoxygenated, deoxyfluorinated, as well as carboxymethylated cellulose and chitin analogues with full control over the degree and pattern of substitution. Molecular dynamics simulations and crystallographic analysis show how distinct hydrogen‐bond modifications drastically affect the solubility, aggregation behavior, and crystallinity of carbohydrate materials. This systematic approach to establishing detailed structure–property correlations will guide the synthesis of novel, tailor‐made carbohydrate materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号