首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   3篇
  国内免费   1篇
化学   1篇
力学   1篇
物理学   3篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2011年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 9 毫秒
1
1.
Lens-free holographic microscopy could achieve both improved resolution and field of view(FOV), which has huge potential applications in biomedicine, fluid mechanics and soft matter physics. Unfortunately, due to the limited sensor pixel size, target objects could not be located to a satisfactory level. Recent studies have shown that electromagnetic scattering can be fitted to digital holograms to obtain the 3 D positions of isolated colloidal spheres with nanometer precision and millisecond temporal resolution. Here, we describe a lens-free holographic imaging technique that fits multi-sphere superposition scattering to digital holograms to obtain in situ particle position and model parameters: size and refractive index of colloidal spheres. We show that the proposed method can be utilized to analyze the location and character of colloidal particles under large FOV with high density.  相似文献   
2.
王坤鹏  黄烨 《中国物理 B》2011,20(7):77401-077401
The formation energies and the equilibrium concentration of vacancies,interstitial H,K,P,O and antisite structural defects with P and K in KH 2 PO 4 (KDP) crystals are investigated by ab initio total-energy calculations.The formation energy of interstitial H is calculated to be about 2.06 eV and we suggest that it may be the dominant defect in KDP crystal.The formation energy of an O vacancy (5.25 eV) is much higher than that of interstitial O (0.60 eV).Optical absorption centres can be induced by defects of O vacancies,interstitial O and interstitial H.We suggest that these defects may be responsible for the lowering of the damage threshold of the KDP.A K vacancy defect may increase the ionic conductivity and therefore the laser-induced damage threshold decreases.  相似文献   
3.
复合材料加筋结构可作为航空结构中的承力部件,其损伤与破坏对航空器的结构安全和服役性能至关重要.本文通过试验和数值仿真手段研究了短柱型复合材料结构压缩失效机理和极限承载力.通过短柱型单加筋板的轴向压缩破坏试验,分析梳理出界面脱粘和材料压溃两种典型失效形式;分别建立加筋板壳单元模型和实体单元模型,引入内聚力模型和Hashin 准则描述界面脱粘效应与材料破坏,结果表明壳单元模型配合内聚力模型和Hashin 准则可以有效地预测加筋板的极限承载力.分别讨论了加筋板长度、筋条高度、筋条/蒙皮刚度比等参数对加筋板的屈曲承载力的影响,为短柱型复合材料加筋壁板压缩损伤与破坏预测分析提供有益的参考.  相似文献   
4.
Chuchu Zhu 《中国物理 B》2022,31(7):76201-076201
Topological materials have aroused great interest in recent years, especially when magnetism is involved. Pressure can effectively tune the topological states and possibly induce superconductivity. Here we report the high-pressure study of topological semimetals $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu} $ and Yb), which have the same crystal structure. In antiferromagnetic (AFM) Weyl semimetal EuCd$_{2}$Sb$_{2}$, the Néel temperature (${T}_{\rm N}$) increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa. When pressure is above 14.9 GPa, the AFM peak of resistance disappears, indicating a non-magnetic state. In paramagnetic Dirac semimetal candidate YbCd$_{2}$Sb$_{2}$, pressure-induced superconductivity appears at 1.94 GPa, then ${ T}_{\rm c}$ reaches to a maximum of 1.67 K at 5.22 GPa and drops to zero at about 30 GPa, displaying a dome-shaped temperature-pressure phase diagram. High-pressure x-ray diffraction measurement demonstrates that a crystalline-to-amorphous phase transition occurs at about 16 GPa in YbCd$_{2}$Sb$_{2}$, revealing the robustness of pressure-induced superconductivity against structural instability. Similar structural phase transition may also occur in EuCd$_{2}$Sb$_{2}$, causing the disappearance of magnetism. Our results show that $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu}$ and Yb) is a novel platform for exploring the interplay among magnetism, topology, and superconductivity.  相似文献   
5.
碳化钨在对硝基苯酚电还原过程中的电催化行为   总被引:4,自引:0,他引:4  
以碳化钨(WC)粉末为电催化材料制成了碳化钨粉末微电极(WC-PME). 采用循环伏安和线性扫描等方法研究了酸性溶液中对硝基苯酚(PNP)在WC-PME上的电还原行为. 研究表明, 在相同测试条件下, PNP在WC-PME上电还原的电位比Cu-Hg微电极正得多;WC-PME对氢具有较强的吸附能力, 有利于有机物的电还原反应. PNP在WC-PME上和Pt微电极上的还原电位相近, 但在WC-PME上的峰电流比在Pt微电极上高5倍多, 这主要与WC粉末的结构形貌有关.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号