首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
化学   5篇
力学   1篇
  2023年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  1994年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
活性炭纤维吸附脱除NO过程中NO氧化路径分析   总被引:1,自引:0,他引:1  
在小型固定床吸附实验台上开展了黏胶基活性炭纤维吸附脱除NO的实验研究。采用H2O2溶液浸渍以及热处理方法对活性炭纤维表面进行修饰,以获得表面孔隙结构接近而含氧官能团含量不同的样品;考察样品在惰性氮气气氛、含氧气氛下吸附脱除NO的效果,以及表面含氧含氮官能团的变化规律。探讨了含氧官能团在NO催化氧化过程中的作用及含氧气氛下O2对于NO转化为NO2的影响,分析了活性炭纤维表面吸附的NO向NO2的主要转化途径。结果表明,在氮气气氛下活性炭纤维表面C-O官能团对吸附态的NO起到氧化作用,吸附态NO被C-O官能团氧化生成-NO2官能团;在含氧气氛下活性炭纤维吸附NO后表面出现-NO2、-NO3官能团,通过长时间实验测定三种样品在含氧气氛下对NO吸附的效果,发现三种样品稳定时催化氧化效果一致,表明含氧官能团对初始NO的物理吸附影响较大,而对整个吸附过程影响较小。吸附在活性炭纤维表面上的NO与环境气氛中的游离态O2发生氧化反应是NO转变为NO2的主要途径。  相似文献   
2.
在过去的20年里,原子力显微镜(AFM)在纳米生物材料领域有着广泛的应用。AFM可有力地揭示纳米生物材料的表面结构与力学性质,并且可作为纳米加工工具对其进行操作与处理。本文综述了AFM在纳米生物材料中的最新应用进展,包括纳米生物材料的成像与表征,力学性能测量和纳米加工。AFM可用来观察纳米生物材料的表面形貌并对其特征高度和表面粗糙度进行分析,还可对其动态过程进行原位观察。通过AFM相图还可得到有时候高度图无法获取的一些表面特征。AFM力曲线可用于测量针尖与纳米生物材料之间的黏附力及分子内外的相互作用力。AFM纳米压痕技术可用来测量材料的相关力学性质(弹力,杨氏模量,硬度,纳米断裂行为等)。此外,AFM也已经被探索用于精准、可控、可重复地加工纳米生物材料。总之,作为一个强大的纳米技术工具,AFM已成为纳米生物材料相关研究领域的一个理想的表面分析和表面加工工具。  相似文献   
3.
挠性接头细颈尺寸在线测量技术的研究   总被引:1,自引:1,他引:1  
基于差压式气动测量原理,将气动测量技术、新型传感器技术和电子技术等有机结合在一起,解决了惯性器件中典型关键元件─挠性接头的细颈尺寸的在线停车测量问题。测量分辨率为0.1μm,测量精度优于0.5μm。  相似文献   
4.
利用密度泛函理论的B3LYP方法,6-31G(d)基组,在zigzag型的四并苯模型上对NO、O2分子在活性炭纤维(ACFs)表面的吸附行为进行研究,并探讨了ACFs催化氧化NO的主要机理路径。研究结果表明,环境气氛中的O2分子可以先吸附于ACFs表面形成两个半醌基(C-O),之后C-O和吸附态的NO(C-NO)发生氧化反应生成-NO2;游离态的O2也可以经过ACFs表面的催化作用形成活性氧原子(O*)从而直接和吸附态的NO反应生成-NO2。与NO相比,O2分子的吸附能大,在同NO的竞争吸附中占据优势,结合统计热力学分析,吸附态的NO和游离态的O2所产生的活性氧原子发生氧化反应是NO转化为NO2的主要途径。  相似文献   
5.
肿瘤靶向纳米递药系统是指利用肿瘤组织特殊的生理病理特点,由纳米载体包载肿瘤诊疗药物构建而成的对肿瘤组织具有靶向定位功能的药物递送系统。多肽介导的肿瘤靶向纳米递药系统是肿瘤靶向递药领域较新的一个研究方向,本文综述了该研究方向的四个重要发展历程——单功能靶向、双功能靶向、肿瘤穿透和环境响应型靶向纳米递药系统,并介绍了各类递药系统的设计原理和典型研究案例。此外,对目前多肽介导的纳米递药系统存在的优势与不足进行了分析。最后,针对当前主动靶向肿瘤递药系统存在的研究困境,提出了一种新型肿瘤靶向递药策略——"系统性靶向"策略。随着相关学科和多学科交叉的发展,多肽介导的肿瘤靶向纳米递药系统将在肿瘤治疗中扮演更为重要的角色。  相似文献   
6.
<正>肌肽是由β-丙氨酰与L-组氨酸残基构成的二肽,具有相对分子质量小,性质稳定、易吸收等优点。肌肽可以调节机体内酸碱度、螯合金属离子、抑制非酶糖基化,具有抗氧化性等生理活性[1-3]。肌肽可通过清除或抑制自由基阻止或缓解皮肤衰老,被广泛地应用于抗衰老化妆品中。不同浓度水平的肌肽对修复皮肤损伤、改善皮肤等功效方面有明显区别,如果过量使用则会导致皮肤过敏等副作用[4],因此在化妆品研制过程中,需要控制肌肽的添加量。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号