首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   9篇
  国内免费   3篇
化学   1篇
晶体学   6篇
物理学   7篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有14条查询结果,搜索用时 18 毫秒
1.
MAX相是一类具有层状结构的三元碳化物或(和)氮化物,M是过渡金属元素,A主要是ⅢA~ⅤA族元素,X是C或N元素。这类化合物兼具陶瓷材料和金属材料的特点,具有优异的导电、导热、耐腐蚀以及抗氧化等性能,在诸多领域具有潜在应用价值。近年来,新元素、新结构和固溶体MAX相的不断出现,进一步扩展了MAX相家族。固溶体MAX相是将合适的元素固溶到已知MAX相中而得到的新MAX相。本文分四类总结了127种MAX相固溶体,对其结构改变和性能调控进行了概括,并指出目前研究存在的理论问题和亟须解决的关键技术,最后对MAX相固溶体的发展进行了预测和展望。  相似文献   
2.
MXene是一种新型的二维过渡金属碳化物或碳氮化物,化学式为Mn+1Xn,M代表过渡金属,X代表碳或者氮.这种二维材料具有二维层状堆垛结构,层与层之间有大量纳米尺度的孔隙,层间孔隙的大小非常适合于吸附气体分子.通过选择MXene的种类以及控制MXene表面的吸附官能团,可以使MXene对不同气体的吸附能力显著不同.MXene的表面具有催化活性,可以将吸附的气体转化为另一种气体.本文分析MXene在制备方面的最新进展,总结刻蚀溶液对所制备材料结构的影响;分析了MXene的独特结构导致其在气体吸附以及转化方面的优良性能,介绍了MXene在气体吸附、催化转化等方面最新的理论和实验研究成果;总结了MXene用作高性能气体吸附转化材料需要解决的主要问题.  相似文献   
3.
MAX相是一种兼具金属和陶瓷性能的新型三元层状过渡金属碳氮化物。传统合成MAX相的方法都有一定的局限性,如反应温度较高、合成时间过长、合成样品较少,且大部分无法直接一步制备所需MAX相。近些年来,采用熔盐法合成MAX相的报道越来越多,并且工艺持续改进。本文从传统熔盐法合成MAX相出发,分析并阐述了新熔盐法合成MAX相的研究进展。传统熔盐法利用较低熔点的熔盐作为反应溶剂,提高了反应效率;熔盐屏蔽法以熔盐作为反应溶剂的同时还可防止氧化,使得反应可以在空气中进行;路易斯酸盐法则是将熔盐作为反应原料来合成MAX新相;熔盐电化学法以电脱氧的方式,将合成原料由纯金属改为金属氧化物,降低了生产成本。熔盐法所合成MAX相产物较传统方法所合成产物的产量及纯度更高,所需要的温度、能耗以及成本更低。因此,熔盐合成法是未来大批量合成MAX相以及MAX新相合成的一个重要方法。  相似文献   
4.
王海燕  胡前库  杨文朋  李旭升 《物理学报》2016,65(7):77101-077101
利用基于密度泛函理论的第一性原理方法研究了金属元素X (X分别表示V, Nb, Ta, Cr, Mo和W)掺杂对TiAl合金性能的影响. 研究发现, 掺杂可以有效减小合金的各向异性, 增强Ti-Al 原子间的相互作用, 同时增强金属键性, 减弱共价键性, 有利于塑性变形. 在相同的压力下, 不同的掺杂浓度和掺杂元素对体积的影响不同. 通过计算不同掺杂体系的弹性常数、体弹模量和剪切模量可知: 当掺杂浓度为6.25%时, 相对于V, Nb和Ta, Cr, Mo和W掺杂能较好地改善TiAl金属间化合物的韧性; 当掺杂浓度为12.5%时, 相对其他掺杂元素Mo的韧化作用最强. 从Mo掺杂后TiAl体系的分波态密度和电荷密度图, 发现Mo和Ti 原子发生强烈的s-s, p-p, d-d电子相互作用, 有效地束缚了合金中Ti和Al原子的迁移, 有助于提高合金的稳定性和强度.  相似文献   
5.
在过渡金属轻元素化合物中,寻找新的硬质或者超硬材料是当前的一个研究热点.目前寻找范围多集中在过渡金属硼化物、碳化物和氮化物等二元体系,三元相的研究则相对较少.本文以已知Nb_3B_3C和Nb_4B_3C_2结构为模板,采用元素替代法构建了29种TM_3B_3C (TM为过渡金属元素)结构和29种TM_4B_3C_2结构,采用基于密度泛函理论的第一性原理计算方法,成功找到了热力学、动力学以及力学都稳定的Ta_3B_3C和Ta4B_3C2两种新相.结构搜索计算确认了这两相为全局能量最优结构.能带结构和态密度的计算显示这两相均为导体,导电性主要源于Ta原子的d电子.这两种新相的硬度大约为26 GPa,说明Ta_3B_3C和Ta_4B_3C_2属于高硬度材料,但不是超硬材料.  相似文献   
6.
V2C MXene是新型类石墨烯二维碳化物MXene的重要成员.相对于最常见的Ti3 C2 MXene,V2CMXene更难制备,但是在某些领域,具有更好的性能.本文综述V2CMXene的制备方法、性能以及应用方面的研究进展.通过对比几种V2C的制备方法,总结出相对温和、简便且较为经济的制备高纯度V2C MXene方法.分析目前所制备的V2CMXene的结构与性能,介绍其电化学性能、催化、吸附、热稳定性、光电特性等.总结V2C MXene的应用,重点探讨V2C MXene在电化学领域的应用,并且展望其在更多领域的重要应用.  相似文献   
7.
本文采用第一性原理计算首先研究了Ti3C2O2和V2CO2与CH4气体分子之间的相互作用,发现Ti3C2O2和V2CO2对CH4的吸附较弱属于物理吸附,不适宜用作探测CH4。在此基础上研究了电荷调控下CH4气体分子与Ti3C2O2和V2CO2之间的相互作用。结果表明:随着体系电荷态的增加,Ti3C2O2和V2CO2对CH4气体分子的吸附作用逐渐增加变为化学吸附。当体系电荷态大于或等于-2时,CH4气体分子在Ti3C2O2和V2CO2表面可以被有效捕获。撤去电荷后,Ti3C2O2、V2CO2与CH4气体分子之间的吸附恢复至物理吸附,CH4气体分子易脱附。因此,通过调控Ti3C2O2和V2CO2的电荷态,可以简单地实现CH4的捕获与释放。Ti3C2O2和V2CO2有望成为CH4探测或捕获材料。  相似文献   
8.
王海燕  历长云  高洁  胡前库  米国发 《物理学报》2013,62(6):68105-068105
采用平面波赝势密度泛函理论研究了钛铝系金属间化合物TiAl3的结构性质, 计算值与实验值及其他理论值相符合. 通过准谐德拜模型研究了TiAl3的热动力学性质, 计算得到了相对体积(V/V0)与压强和温度的关系, 以及不同温度和压强下的热膨胀系数和热容. 与TiAl的计算结果进行对比, 发现随着温度的升高, TiAl的热膨胀系数增大的速度高于TiAl3, 且随着压强的增大温度效应减弱; TiAl3的热容值近似为TiAl的热容值的2倍. 关键词: 结构性质 热动力学性质 第一性原理 高压  相似文献   
9.
Using the crystal structure prediction method based on particle swarm optimization algorithm, three phases(P nnm, C2/m and Pm-3 m) for InS are predicted. The new phase Pm-3m of InS under high pressure is firstly reported in the work. The structural features and electronic structure under high pressure of InS are fully investigated. We predicted the stable ground-state structure of InS was the P nnm phase and phase transformation of InS from P nnm phase to P m-3 m phase is firstly found at the pressure of about 29.5 GPa. According to the calculated enthalpies of InS with four structures in the pressure range from 20 GPa to 45 GPa, we find the C2/m phase is a metastable phase. The calculated band gap value of about 2.08 eV for InS with P nnm structure at 0 GPa agrees well with the experimental value. Moreover, the electronic structure suggests that the C2/m and P m-3m phase are metallic phases.  相似文献   
10.
由于独特的层状结构和原子间特殊的化学键合,MAX相陶瓷材料(化学式为Mn+1AXn)兼具金属和陶瓷材料的优异性能,在很多领域具有广泛的应用前景,自20世纪60年代问世以来就一直备受关注。至今已经发现了100多种MAX相陶瓷材料,其中包括80余种单相以及一系列固溶体。传统的MAX相局限于一定的元素范围和若干M6X层与单A原子层交替堆垛的结构。最近含有Au、Ir、Cu、Zn等新元素的MAX相材料的成功合成大大丰富了MAX相家族,多A层和多MA层结构MAX相的发现也打开了新型MAX相研究的一扇大门。随着理论计算的发展和实验条件的进步,越来越多的新型MAX相陶瓷材料逐渐出现在人们的视野中。本文综述了基于新元素和新多层结构的MAX相的国内外实验合成和理论研究进展,并指出了后续研究需要克服的问题,最后对新型MAX相的研究方向和发展趋势进行了预测和展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号