首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   19篇
化学   17篇
物理学   2篇
  2013年   3篇
  2009年   6篇
  2008年   1篇
  2007年   5篇
  2005年   3篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 46 毫秒
1.
采用密度泛函B3LYP方法对Zn(Ⅱ)在水锰矿(MnOOH)2(H2O)6簇模型表面的水合、一级和二级水解三类共11种吸附构型进行了理论研究. 计算结果表明, 水合吸附构型的稳定性顺序为DC(双角)>SE-B(单边-B)>SE-A(单边-A)>DE(双边), 水解吸附构型的稳定性顺序为DC>SE-A>SE-B>DE, 均符合鲍林第三规则; 热化学分析结果说明, 其吸附和水解是相互制约的两个过程, 这一结论通过前线轨道理论分析得到了证明; 自然布居分析结果表明, 吸附过程中电子由簇模型向吸附质迁移; 结合电子供体-受体相互作用和前线轨道组成分析了吸附产物的稳定性.  相似文献   
2.
分子环境科学与亚稳平衡吸附理论研究进展   总被引:1,自引:0,他引:1  
环境界而是环境科学的重要研究内容,许多物质在环境中的分布、迁移、转化、及毒性都受到微界面的控制.污染物在多介质、多界而上的分子结构卣接影响着他们的宏观物理、化学、牛物学行为,因此分子环境科学将是未来环境科学研究中重要的发展方向之一.开展分子环境科学研究,首先需要发展可以直接用于环境样品(常有含水、生命、多组分、低浓度等特性)的分子结构测定手段和理论计算方法.同步辐射是当前分子环境科学最基本和最重要的研究手段之一.文章基于作者的课题组的研究工作进展,概括介绍了X射线精细结构(XAFS)技术及量子化学计算在分子环境科学中的一些应用及展望.同时,简要介绍了界面科学中亚稳平衡吸附理论(MEA理论)的基本原理、研究进展及其在解决若干传统吸附理论解释不了的热力学和环境问题中的应用.  相似文献   
3.
采用密度泛函理论(DFT)B3LYP方法对全氟辛烷磺酸(PFOS)在锐钛型TiO2表面的化学吸附和物理吸附行为进行了研究,其中化学吸附包含双齿双核(BB)和单齿单核(MM)在内的4种可能的吸附构型.吸附能(Eads)及反应吉布斯自由能(ΔGads)的计算结果表明,PFOS分子易于与TiO2表面发生氢键作用吸附;化学吸附表现为PFOS分子与TiO2表面的水分子(H2O)和羟基(—OH)反应,且与取代—OH相比,H2O取代相对更容易发生,其中,MM1构型(取代一个表面水分子)为化学吸附中的优势构型.PFOS在锐钛矿表面吸附的热力学稳定性和反应自发性顺序如下:H-Bonded(氢键吸附)>MM1(取代一个表面水分子)>BB1(取代两个表面水分子)>MM2(取代一个表面羟基)>BB2(取代一个表面水分子和一个表面羟基).成键结构分析表明,TiO2表面H2O/—OH官能团与PFOS上的磺酸基之间形成了中等强度的氢键;在化学吸附过程中,电荷从PFOS分子向TiO2表面发生转移,生成Ti—O—S化学键,电荷转移主要来自PFOS分子的O和F原子.  相似文献   
4.
通过对比As(V)在TiO2颗粒上的柱(column)吸附和静态(batch)吸附行为,研究了柱吸附和静态吸附两种反应模式对该体系亚稳态吸附的影响.在相同热力学条件下,将总量一定的As(V)溶液分别加入柱吸附和静态吸附体系中.结果表明,随着吸附模式的改变,静态吸附体系比柱吸附体系更快达到吸附平衡,静态吸附体系平衡吸附量(0.42 mg·g-1)明显高于柱吸附体系平衡吸附量(0.25 mg·g-1),且静态吸附体系的吸附不可逆性弱于柱吸附体系的吸附不可逆性.说明溶质吸附模式(动力学条件)的改变使得相同热力学条件下的吸附反应达到了不同的平衡状态.柱吸附和静态吸附实验中,As(V)在TiO2颗粒上的液膜扩散系数、总传质系数及吸附平衡后形成的微观吸附状态均不同,共同导致了两种反应宏观吸附行为上的差异.  相似文献   
5.
用延展X射线吸收精细结构光谱(EXAFS)研究了不同温度对Zn(II)-锐钛矿型TiO2吸附产物微观构型和吸附可逆性的影响机制. 宏观的吸附-解吸实验表明, 不同温度下的吸附等温线可以用Langmuir 模型进行较好的描述(R2≥0.990). 随温度升高, 吸附等温线显著升高, Zn(II)在TiO2表面的饱和吸附量由5 ℃时的0.125 mmol·g-1增至40 ℃时的0.446 mmol·g-1; 而体系的不可逆性明显减弱, 解吸滞后角θ由32.85°减至8.64°. 求得体系反应的热力学参数⊿H、⊿S分别为24.55 kJ·mol-1 和159.13 J·mol-1·K-1. EXAFS结果表明, Zn(II)主要是通过共用水合Zn(II)离子及TiO2表面上的O原子结合到TiO2表面上,其平均Zn-O原子间距为RZn-O=(0.199±0.001) nm. 第二配位层(Zn-Ti 层)的EXAFS图谱分析结果表明, 存在两个典型的Zn-Ti 原子间距, 即R1=(0.325±0.001) nm (边-边结合的强吸附)和R2=(0.369±0.001) nm(角-角结合的弱吸附). 随温度升高, 强吸附比例(CN1)基本不变而弱吸附比例(CN2)增加, 两者比值(CN1/CN2)逐渐减小. 该比值的变化从微观角度解释了宏观实验中温度升高, 不可逆性减弱的吸附现象.  相似文献   
6.
用延展X射线吸收精细结构(EXAFS)技术并结合密度泛函理论(DFT)研究了Zn(Ⅱ)在锐钛型TiO2表面上微观吸附结构。EXAFS结果表明, Zn(Ⅱ)在吸附时由自由水合状态下的Zn—O六配位八面体结构向四配位四面体结构转化, 中心Zn原子的第二配位层存在两种不同的Zn—Ti距离(R1=0.371和R2=0.332 nm). 用DFT方法对四配位水合Zn离子在簇Ti2O11H14上进行优化后发现, 四配位的Zn—O平均距离为0.200 nm; 外层Zn—Ti结合存在两种稳定的吸附模式: 单角吸附模式和更加稳定的双角吸附模式, 其Zn—Ti距离分别为0.369和0.335 nm. EXAFS结果与DFT计算结果吻合, 说明Zn(Ⅱ)在锐钛型TiO2表面上存在不同的亚稳平衡态吸附结构.  相似文献   
7.
用密度泛函和XANES计算研究Zn2+在水锰矿表面的吸附和沉淀   总被引:4,自引:0,他引:4  
用密度泛函理论(density function theory, DFT)和X射线近边结构(X-ray absorption near edge structure, XANES)模拟计算了不同酸度(pH = 7.0, 7.5 和 8.0)下Zn(II)在水锰矿表面的吸附. 优化的几何结构表明, 只有双边吸附方式的水解簇既能解释H+ 释放机制, 又能与扩展X射线吸收精细结构(extended X-ray absorption fine structure, EXAFS)实验键长值相吻合. 吸附能计算表明, 各种吸附方式的稳定性双边(DE)>双角(DC)>B型单边(SE-B)>A型单边(SE-A);水解能计算表明各种吸附态Zn2+ 均比溶液中水合锌离子易水解. 各种吸附簇模型的XANES计算谱未能与实验谱吻合, 即, 表面发生的并不是简单的吸附. pH=7.5和pH=8.0吸附样品的XANES实验谱与Zn5(OH)6(CO3)2的实验谱非常接近, 因此认为pH=7.5和pH=8.0下Zn(II)在水锰矿表面发生沉淀, Zn(II)是Zn—O八面体和Zn—O四面体的混合, 它们按类似Zn5(OH)6(CO3)2结构中的八面体和四面体排列方式排列. pH=7.0时, Zn(II)在水锰矿表面发生的主要是边连接方式的吸附.  相似文献   
8.
应用延展X射线吸收精细结构(EXAFS)方法, 研究了不同pH对Zn(Ⅱ)在锐钛矿型TiO2表面吸附产物的微观构型的影响. 宏观的吸附-解吸实验表明, 随着pH值由5.8增大至6.8, 吸附等温线明显升高, Freundlich吸附常数由1.345 L/g增加到15.385 L/g; 而体系的不可逆性逐渐降低, 不可逆吸附系数(TⅡ)由0.43降低到0.23. 不同pH条件下吸附样品的EXAFS结果表明, Zn(Ⅱ)主要通过共用水合离子及TiO2表面的O原子结合到TiO2表面上, 第一配位层(Zn—O层)原子间距和配位数随着pH值增大逐渐降低, Zn(Ⅱ)在TiO2表面吸附形态从六配位向四配位转化;第二配位层(Zn—Ti层)分析结果表明, 存在2个典型的Zn—Ti原子间距, 即R1=0.319~0.334 nm(双齿方式结合的强吸附)和R2=0.366~0.378 nm(单齿方式结合的弱吸附), 随着pH值的升高, 强吸附位(CN1)逐渐减少而弱吸附位(CN2)逐渐增加, 其比值由2.12降低至0.89, 从而导致其在高pH值的条件下吸附量和可逆性明显增大. EXAFS结果从分子水平说明了该体系在不同pH值条件下表现出的可逆性差异是由于微观吸附状态不同所致.  相似文献   
9.
用延展X射线吸收精细结构(EXAFS)光谱和密度泛函理论(DFT)研究了As(V)-TiO2体系的吸附机理. 离子强度变化对As(V)-TiO2体系吸附无显著影响, 表明吸附后形成了内层络合物. EXAFS结果表明, As(V)原子主要通过—AsO4上的O原子结合到TiO2表面上, 平均As-O原子间距(R)在吸附前后无明显变化, 保持在(0.169±0.001) nm. As-Ti层的EXAFS分析结果与DFT计算的吸附构型的As-Ti原子间距对照表明, 体系存在两种主要亚稳平衡吸附(MEA)结构, 即对应于R1=(0.321±0.002) nm 的双角(DC)强吸附构型和R2=(0.360±0.002) nm的单角(SC)弱吸附构型. 而且随着吸附量由9.79 mg·g-1增加至28.0 mg·g-1, 吸附样品中双角构型配位数与单角构型配位数的比值(CN1/CN2)从3.3降低到1.6, 说明双角亚稳平衡吸附结构在低覆盖度时占优势, 而在高表面覆盖度时单角亚稳平衡吸附结构占优势, 即在表面覆盖度较大时, As(V)在TiO2表面上倾向于形成单角构型.  相似文献   
10.
田秉晖  潘纲  栾兆坤 《化学进展》2007,19(2):205-211
强化絮凝工艺已在去除有机污染物的水处理工艺中得到较好应用,但其作用机理一直未能得到明晰的结论,而且阳离子聚电解质强化絮凝具有"高效性"和"专属性"的问题也无法回答.近年来由于分子环境科学及先进化学分析手段的应用,基于不同絮凝化学成因的强化絮凝技术研究已成为环境水化学和水污染控制技术领域的研究热点.本文综述了国际上近年提出的专属吸附絮凝、聚电解质络合絮凝和胶束吸附絮凝等强化絮凝技术化学成因的研究现状,并对今后的研究提出了展望.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号