首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   4篇
力学   1篇
数学   1篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2012年   1篇
  2000年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
xLi2MnO3-(1-x)LiNi0.9Zn0.1O2 (x = 0.1, 0.2 and 0.3) cathodes were prepared by two steps solid-state reaction method. Layered crystalline phases (space groups of C2/m for Li2MnO3 and R3m for LiNi0.9Zn0.1O2) were detected in all cathodes. FTIR study also revealed the formation of the layered-type structures of all cathodes. The structural parameters were greatly influenced by the contents of Li2MnO3 in xLi2MnO3-(1-x)LiNi0.9Zn0.1O2. The electrical conductivities were found in the range of 1.2 × 10?6 to 2.7 × 10?6 S/cm. The dielectric spectra revealed the interfacial polarization Maxwell–Wagner type dielectric dispersion existing in all samples. The cathodes delivered the discharge capacities of 149 (x = 0.1), 151 (x = 0.2) and 157 mAh/g (x = 0.3) with capacity retention between 94.6 and 96.8% when they were cycled from 3.0 to 4.5 V under 0.1C rate. The x = 0.3 cathode exhibited the highest cyclic performance (96.8%) after 10 cycles due to its lower cations disorder.  相似文献   
2.
Integrating engineering into the K-12 science curriculum continues to be a focus in national reform efforts in science education. Although there is an increasing interest in research in and practice of integrating engineering in K-12 science education, to date only a few studies have focused on the development of an assessment tool to measure students’ understanding of engineering design. Most of the existing measures focus only on knowledge and understanding of engineering design concepts using multiple-choice items with the exception of the mixed-format Engineering Concept Assessment (ECA). Also, advanced measurement models are lacking application in the testing of such mixed-format assessments in science education. This study applied many-faceted Rasch measurement to the modified ECA for eighth-grade (ECA/M8) and a newly constructed rubric applied by five judges across 497 eighth-grade students’ responses after experiencing an integrated learning unit on the engineering design process. The results supported the fit of the items and rubric rating scales to the Rasch specifications. Recommendations are made for item wording, and further reliability and validity testing of the ECA/M8, and use of the ECA/M8 in science education and research.  相似文献   
3.
Fractional-order dynamics is applicable to biological excitable systems with strong interactions or systems with long-term memory effect. The activity of neural membrane voltage depends on the long-range correlations of ionic conductances. Such a behavior of the membrane voltage with long-range correlation can be better described with a fractional-order dynamics. A fractional-order coupled modified three-dimensional (3D) Morris–Lecar (M–L) neural system has been presented to show the variations in the firing patterns from resting state \( \rightarrow \) oscillatory pattern \( \rightarrow \) bursting and the synchronous behavior by designing a bidirectional coupling mechanism. The fractional exponents are lying between 0 and 1. The predominant controller of the changes of firing behavior is the fractional exponent. The stability of synchronization and nature of the fractional system dynamics have been analyzed. To make the investigations more convincing and biologically plausible, we consider a network of M–L oscillators with bidirectional synaptic coupling functions using global type connections and present the effectiveness of the coupling scheme.  相似文献   
4.
A microwave procedure for the digestion of the NIST 1634b reference material “residual fuel oil” in closed pressurized vessels was developed in an attempt to facilitate routine analysis and obtain reproducible conditions or comparable results. The influence of sample size, reagent composition and volume, microwave power, and duration of heating on the digestion procedure was studied. Pressure and temperature inside the reaction vessels were monitored to determine the progression of the reaction and to develop optimal conditions. A nine-step heating program requiring 36.5 min with microwave power not exceeding 450 W in the pulsed mode was found suitable for the digestion of ~ 250 mg fuel oil with a mixture of nitric acid (5.0 mL) and hydrogen peroxide (2.0 mL). The reproducibility of microwave power was determined in terms of the relative standard deviations (n = 3) for temperature (2.7%) and pressure (4.9%) data. The vapor pressures obtained with 5.0 mL Milli-Q water (heated) in an 80-mL digestion vessel showed good agreement with literature data. The excess acid in the resulting digests was removed by evaporation and the concentrations of 24 elements (Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, V, U, and Zn) were determined in the diluted digests by inductively coupled plasma mass spectrometry (ICP-MS). The experimental results were in good agreement with the certified and recommended concentrations for eight elements (Al, As, Co, Cr, Ni, Pb, V, Zn) in solutions obtained after one digestion step. An additional digestion step, consisting of intermediate cooling and venting stages, was required for the accurate determination of Fe. No agreement was reached for Ca and Ba even after two-step digestion. The proposed method of digestion provided precise results with relative standard deviations generally less than 5% for most of the elements determined.  相似文献   
5.
A microwave procedure for the digestion of the NIST 1634b reference material "residual fuel oil" in closed pressurized vessels was developed in an attempt to facilitate routine analysis and obtain reproducible conditions or comparable results. The influence of sample size, reagent composition and volume, microwave power, and duration of heating on the digestion procedure was studied. Pressure and temperature inside the reaction vessels were monitored to determine the progression of the reaction and to develop optimal conditions. A nine-step heating program requiring 36.5 min with microwave power not exceeding 450 W in the pulsed mode was found suitable for the digestion of approximately 250 mg fuel oil with a mixture of nitric acid (5.0 mL) and hydrogen peroxide (2.0 mL). The reproducibility of microwave power was determined in terms of the relative standard deviations (n = 3) for temperature (2.7%) and pressure (4.9%) data. The vapor pressures obtained with 5.0 mL Milli-Q water (heated) in an 80-mL digestion vessel showed good agreement with literature data. The excess acid in the resulting digests was removed by evaporation and the concentrations of 24 elements (Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, V, U, and Zn) were determined in the diluted digests by inductively coupled plasma mass spectrometry (ICP-MS). The experimental results were in good agreement with the certified and recommended concentrations for eight elements (Al, As, Co, Cr, Ni, Pb, V, Zn) in solutions obtained after one digestion step. An additional digestion step, consisting of intermediate cooling and venting stages, was required for the accurate determination of Fe. No agreement was reached for Ca and Ba even after two-step digestion. The proposed method of digestion provided precise results with relative standard deviations generally less than 5% for most of the elements determined.  相似文献   
6.
In the title compound [systematic name: (1Z,3Z)‐1,3‐dihydrazinylidene‐1H‐inden‐2(3H)‐one], C9H8N4O, isolated molecules possess approximate noncrystallographic C2v symmetry and their cis conformation and planarity are assisted by a pair of short intramolecular N—H...O hydrogen bonds. Each molecule is asymmetrically involved in an extensive three‐dimensional network of N—H...O and N—H...N hydrogen bonds, and the structure also exhibits weaker π–π and C=O...C interactions. The structure features an R44(12) motif consisting solely of N and H atoms and possessing crystallographic symmetry.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号