首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2012年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Applied Biochemistry and Biotechnology - Phanerochaete chrysosporium lignin peroxidase (LiP) can degrade synthetic dyes such as heterocyclic, azo, and triphenylmethane on its activation by H2O2....  相似文献   
2.
Au/SiO2 and Ag/SiO2 supported metal-nanoparticles (MNPs) were implemented to fabricate SiO2-based inorganic?Cinorganic hybrid sonogel films. Prepared Au/SiO2- and Ag/SiO2-MNPs exhibited low 2D-HCP crystallinity with particle diameters below 10?nm and homogeneous size distribution. The catalyst-free (CF) sonogel route was successfully implemented to produce these optically active nanocomposite films by doping the liquid sol-phase with these MNP systems and its subsequent deposition onto glass substrates via standard spin-coating procedures. The easy MNP-loading within the mesoporous dielectric sonogel network evidenced a huge chemical affinity between the silica sonogel hosting system and the guest SiO2-supported MNPs. This fact allowed us to fabricate high quality hybrid films suitable for cubic nonlinear optical (NLO) characterizations via the Z-Scan technique. Indeed, the hosting sonogel network provided adequate thermal and mechanical stability protecting the active MNPs from environment conditions and diminished their tendency to aggregate; thus, preserving their pristine optical properties and morphology, giving rise to stable sol?Cgel hybrid films appropriate for photonic applications. Comprehensive morphological, structural, spectroscopic and nonlinear photophysical characterizations were optimally performed to the developed hybrid films. Our results have shown that the crystalline nature of the implemented MNPs, their small sizes and appropriate guest?Chost stabilizing interactions play a crucial role in the observation of improved cubic NLO-properties of these MNP structures embedded within the highly pure CF-sonogel confinement.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号