首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
化学   15篇
晶体学   1篇
物理学   7篇
  2022年   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  1997年   1篇
  1995年   3篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Site‐directed spin labeling and EPR spectroscopy offer accurate, sensitive tools for the characterization of structure and function of macromolecules and their assemblies. A new rigid spin label, spirocyclohexyl nitroxide α‐amino acid and its N‐(9‐fluorenylmethoxycarbonyl) derivative, have been synthesized, which exhibit slow enough spin‐echo dephasing to permit accurate distance measurements by pulsed EPR spectroscopy at temperatures up to 125 K in 1:1 water/glycerol and at higher temperatures in matrices with higher glass transition temperatures. Distance measurements in the liquid nitrogen temperature range are less expensive than those that require liquid helium, which will greatly facilitate applications of pulsed EPR spectroscopy to the study of structure and conformation of peptides and proteins.  相似文献   
2.
Anandalakshmi  H  Velavan  K  Sougandi  I  Venkatesan  R  Rao  P Sambasiva 《Pramana》2004,62(1):77-86
Single crystal EPR studies of Mn(II)-doped zinc ammonium phosphate hexahydrate (ZnNH4PC4·6H2O) have been reinvestigated at room temperature. Single crystal rotations along the three orthogonal axes indicate that the spin Hamiltonian parameters for the interstitial site are:g xx = 1.966,g yy = 1.972,g zz = 1.976;D xx = -12.28 mT,D yy = -2.09 mT andD zz = 14.37 mT;A xx = 9.06 mT,A yy = 9.06 mT andA zz = 11.09 mT;a = -0.11 mT. These parameters differ considerably from the previous report of Chand and Agarwal and indicate the orthorhombic nature of the paramagnetic impurity. The impurity is found to enter the lattice interstitially, in contrast to earlier prediction of substitutional position. The percentage covalency of the Mn-0 bond has been estimated.  相似文献   
3.
1,3-Alternate calix[4]arene with para-phenylene spacers connecting nitroxide monoradicals and high-spin (S = 1) diradicals provides tetraradical and octaradical scaffolds that possess conformations with slow electron spin relaxation rates (1/T(1)). Such scaffolds may facilitate tuning of relaxation rates that are more favorable for MRI or DNP applications.  相似文献   
4.
An efficient and general method for the synthesis of unsymmetrical tetrasubstituted ureas from carbamoylimidazole is described. The conversion is achieved by the concurrent quarternization of the imidazole nitrogen and activation of amines with AlMe(3).  相似文献   
5.
Understanding the electron spin relaxation properties of paramagnetic species is a fundamental requirement to use them as a probe to measure distances between sites in biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Even though Ni(II) ion is an essential trace element for many species, relaxation properties are not well understood. Herein, the polycrystalline sample of Ni(II) ion magnetically diluted in Zn(Pyrazole)6(NO3)2 (Ni/ZPN) has been studied in detail by EPR spectroscopy to explore the electron spin relaxation time. Progressive continuous-wave (CW) EPR power saturation study on Ni/ZPN at 300 K yielded 907 mW as the P1/2 value. The cavity constant (KQ) has been calculated using tempol in PVA-BA glass matrix and the product of electron spin-lattice relaxation time (T1) and spin–spin relaxation time (T2) for Ni/ZPN at 300 K has been reported for the first time.  相似文献   
6.
7.
Single crystal EPR studies on Cu(II) doped paramagnetic host lattices, hexaimidazole M(II) dichloride tetrahydrate (M=Co and Ni), isomorphous with M=Zn, have been carried out from room temperature to 77K to understand the nature of Jahn-Teller (JT) distortion in these paramagnetic host systems. The paramagnetic impurity, doped in the present two paramagnetic host lattices, shows anisotropic EPR spectra with superhyperfine from ligands, even at room temperature. An interesting observation noticed in the EPR spectra at room temperature is that there are more resonances corresponding to the second site in the paramagnetic hosts than in the diamagnetic host at 4.2K. This difference in behavior between the diamagnetic and paramagnetic host lattices indicates a change in the depth of the JT valleys. The spin Hamiltonian parameters are evaluated for Cu(II) ion in both the host lattices and the relaxation times have been calculated for the ion in cobalt host lattice only.  相似文献   
8.
Single crystal EPR study has been carried at room temperature for VO(II) doped zinc sodium phosphate hexahydrate. Single crystal rotations in each of the three mutually orthogonal crystallographic planes namely bc, ac, and ab indicate three chemically inequivalent sites, with intensity ratios of 25:13:1. The spin Hamiltonian parameters obtained for the two intense sites are: Site I: gxx=1.983, gyy=1.985, gzz=1.933; Axx=7.39 mT, Ayy=7.15 mT, Azz=19.03 mT; Site. II: gxx=1.985, gyy=1.985, gzz=1.937; Axx=7.36 mT, Ayy=7.25 mT, Azz=18.67 mT. The two VO bond directions in the two sites are approximately at right angles to each other. The powder spectrum clearly indicates two chemically inequivalent sites, confirming the single crystal analysis. Admixture coefficients, Fermi contact, and dipolar interaction terms have also been evaluated.  相似文献   
9.
Single crystal electron paramagnetic resonance (EPR) studies of Mn(II) doped zinc potassium phosphate hexahydrate have been carried out at room temperature. Single crystal rotations along the three orthogonal axes indicate orthorhombic symmetry with spin-Hamiltonian parameters as: g(xx) = 1.9997; g(yy) = 1.9538; g(zz) = 1.9524, D(xx) = 15.49 mT; D(yy) = 0.22 mT; D(zz) = -15.71 mT, A(xx) = 11.70 mT; A(yy) = 10.53 mT; A(zz) = 10.42 mT and a = 0.8 x 10(-4) cm(-1). A large E term indicates considerable distortion from axial symmetry. The impurity is found to enter the lattice substitutionally. The distortion axis for the impurity has been identified along one of the Zn-O bond directions in the crystal.  相似文献   
10.
Single-crystal electron paramagnetic resonance (EPR) study of Mn(II)-doped cobalt ammonium phosphate hexahydrate has been carried out at room temperature. The impurity shows more than 30 line pattern EPR spectra along the three crystallographic axes, suggesting the existence of more than one type of impurity ion in the host lattice. The spin Hamiltonian parameters, estimated from the three mutually orthogonal crystal rotations, are: site 1: g xx =1.989, g yy =1.994, g zz =1.999; A xx =?8.97, A yy =?9.52, A zz =?9.71 mT; D xx =?8.09 mT, D yy =?6.05 mT, D zz =14.14 mT; site 2: g xx =1.988, g yy =2.009, g zz =2.019; A xx =?9.11 mT, A yy =?9.58 mT, A zz =?9.93 mT; D xx =?6.61 mT, D yy =?6.11 mT, D zz =12.72 mT. The angular variation studies further reveal that the Mn(II) impurities enter the lattice substitutionally. The other Mn(II) sites which are at interstitial locations are difficult to follow due to their low intensity. The variation of zero-field splitting parameter with temperature indicates no phase transition. The observation of well-resolved Mn(II) spectrum at room temperature has been interpreted in terms of ‘host spin-lattice relaxation narrowing’ mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号