首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
化学   20篇
晶体学   1篇
力学   1篇
数学   7篇
物理学   41篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   7篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
The weakly pinned single crystals of the hexagonal 2H-NbSe2 compound have emerged as prototypes for determining and characterizing the phase boundaries of the possible order-disorder transformations in the vortex matter. We present here a status report based on the ac and dc magnetization measurements of the peak effect phenomenon in three crystals of 2H-NbSe2, in which the critical current densities vary over two orders of magnitude. We sketch the generic vortex phase diagram of a weakly pinned superconductor, which also utilizes theoretical proposals. We also establish the connection between the metastability effects and pinning.  相似文献   
2.
Exosomes are a subset of secreted lipid envelope-encapsulated extracellular vesicles (EVs) of 50–150 nm diameter that can transfer cargo from donor to acceptor cells. In the current purification protocols of exosomes, many smaller and larger nanoparticles such as lipoproteins, exomers and microvesicles are typically co-isolated as well. Particle size distribution is one important characteristics of EV samples, as it reflects the cellular origin of EVs and the purity of the isolation. However, most of the physicochemical analytical methods today cannot illustrate the smallest exosomes and other small particles like the exomers. Here, we demonstrate that diffusion ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) method enables the determination of a very broad distribution of extracellular nanoparticles, ranging from 1 to 500 nm. The range covers sizes of all particles included in EV samples after isolation. The method is non-invasive, as it does not require any labelling or other chemical modification. We investigated EVs secreted from milk as well as embryonic kidney and renal carcinoma cells. Western blot analysis and immuno-electron microscopy confirmed expression of exosomal markers such as ALIX, TSG101, CD81, CD9, and CD63 in the EV samples. In addition to the larger particles observed by nanoparticle tracking analysis (NTA) in the range of 70–500 nm, the DOSY distributions include a significant number of smaller particles in the range of 10–70 nm, which are visible also in transmission electron microscopy images but invisible in NTA. Furthermore, we demonstrate that hyperpolarized chemical exchange saturation transfer (Hyper-CEST) with 129Xe NMR indicates also the existence of smaller and larger nanoparticles in the EV samples, providing also additional support for DOSY results. The method implies also that the Xe exchange is significantly faster in the EV pool than in the lipoprotein/exomer pool.

Diffusion and xenon NMR based methods to determine a very broad range of sizes and sub-sets of extracellular vesicles.  相似文献   
3.
The hydrophilic oxygen atoms of polyethylenoxide chains inserted as pillars in gamma-zirconium phosphate form hydrogen bonds with the acid groups of the host. As a result the pillars are almost perpendicular to the gamma layers. Upon changing the pH level of the supernatant solution the hydrogen bonds are broken and the pillars become almost perpendicular to the layers (shown schematically). Thus there is a reversible enlargement-shortening of the interlayer space.  相似文献   
4.
5.
6.
7.
Microcrystalline cellulose is a porous natural material which can be used both as a support for nanoparticles and as a reducer of metal ions. Cellulose supported nanoparticles can act as catalysts in many reactions. Cu, CuO, and Cu2O particles were prepared in microcrystalline cellulose by adding a solution of copper salt to the insoluble cellulose matrix and by reducing the copper ions with several reducers. The porous nanocomposites were studied using anomalous small angle X-ray scattering (ASAXS), X-ray absorption spectroscopy, and X-ray diffraction. Reduction of Cu2+ with cellulose in ammonium hydrate medium yielded crystalline CuO nanoparticles and the crystallite size was about 6–20 nm irrespective of the copper concentration. The size distribution of the CuO particles was determined with ASAXS measurements and coincided with the crystallite sizes. Using sodium borohydrate or hydrazine sulfate as a reducer both metallic Cu and Cu2O nanoparticles were obtained and the crystallite size and the oxidation state depended on the amount of reducer.  相似文献   
8.
The properties of polypropylene composites can be tailored through the use of nanoclay fillers. The effectiveness of a metallocene‐catalyzed hydroxyl‐functional polypropylene in the compatibilization of polypropylene layered nanosilicate composites was studied, and the results were compared with those for a commercial maleic anhydride functionalized polypropylene. Polypropylene/organoclay nanocomposites were prepared by melt blending, and two polypropylene/compatibilizer/organoclay ratios, 90/5/5 and 70/20/10, were characterized. The organomodification of the clay was carried out with octadecylamine and N‐methylundecenylamine. The structure of the layered silicate was studied by transmission electron microscopy, wide‐angle X‐ray scattering, and small‐angle X‐ray scattering. The fracture surfaces of the composites and thus the efficiency of the compatibilizers to penetrate the galleries of the organoclays were characterized by scanning electron microscopy, and the melt viscosity was studied by stress‐controlled rotational rheometry. The nanostructure was observed with both alkyl amines used for intercalation. The fillers facilitated the processability of all the composites, consisting of equal amounts of compatibilizer and organoclay filler and, in some of the composites, containing twice as much compatibilizer as organoclay filler. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1892–1903, 2005  相似文献   
9.
The classical order-theoretical characterizations of compact and connected chains, respectively, are extended to wider classes of lattices, using the fact that compactness and (path-) connectedness of maximal chains are closely related to the corresponding properties of the whole lattice (as was already pointed out in an earlier paper due to the second author). Here we replace maximal chains by “links” and study several new types of connectedness in ordered convergence spaces, such as path-connectedness, link-connectedness and 1-connectedness. As a useful framework for these studies, we introduce the concept of “connectivity systems”.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号