首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   11篇
  国内免费   2篇
化学   311篇
晶体学   8篇
力学   14篇
数学   38篇
物理学   185篇
  2023年   6篇
  2022年   16篇
  2021年   11篇
  2020年   26篇
  2019年   16篇
  2018年   17篇
  2017年   26篇
  2016年   21篇
  2015年   11篇
  2014年   24篇
  2013年   49篇
  2012年   31篇
  2011年   42篇
  2010年   14篇
  2009年   20篇
  2008年   24篇
  2007年   25篇
  2006年   19篇
  2005年   16篇
  2004年   10篇
  2002年   10篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   7篇
  1979年   2篇
  1978年   7篇
  1977年   3篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有556条查询结果,搜索用时 16 毫秒
1.
2.
Journal of Radioanalytical and Nuclear Chemistry - Polonium is rapidly emerging as an international environmental health concern primarily because of the recent rise in hydraulic fracturing...  相似文献   
3.
Ring-opening (ROP) and enzymatic copolymerization (ECP) are among the most widely used approaches for synthesizing copolymers of polycaprolactone (PCL). It involves multiple-step reactions and the utilization of enzymes that make the process a lot more complicated, time consuming, and expensive. Atom transfer radical polymerization (ATRP) has been adopted to synthesize a novel amphiphilic copolymer in our study. The study presents a method to eliminate the ROP/ECP multiple steps in monomer polymerization thus making the process simpler and smoother. The synthesis of cationic polymer micelles copolymer of PCL-PGMA (polycaprolactone grafted poly glycidyl methacrylate) was carried out using direct functionalization of hydroxy group in crude PCL to achieve a higher degree of functionalization, i.e., 12.8% for macroinitiator. FTIR and 1H-NMR confirmed the successful synthesis of the copolymer with better control over the molecular weight with a PDI (1.84). DSC and XRD results showed the reduction of crystallinity by 86.81%, making copolymer more compatible for drug delivery application. The synthesized copolymer was further converted to nano-micelles drug carrier having an average size of 96.08 ± 21.22 nm. The drug encapsulation efficiency achieved was 60.0 ± 1.7%, and nano-micelles rendered a slow and controlled release of naproxen with long-term storage stability.  相似文献   
4.
5.

Background

Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results.

Results

Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5.

Conclusion

We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common mechanism of inhibitory action for these scaffolds.
  相似文献   
6.
7.
8.
A new series of 1,2,4‐triazole was designed, synthesized, and characterized as remarkable antimicrobial and antioxidant agents. These heterocycles have been prepared from the cyclization reactions of Schiff bases 3 ( a‐k ) with phenylhydrazine by refluxing under the alkaline medium. The Schiff bases in turn were realized in good yields from the condensation reactions of N‐phenylurea with different aromatic aldehydes. The structures of the intermediates 3 ( a‐k ) and final heterocycles 4 ( a‐k ) have been fully characterized through their spectral parameters.  相似文献   
9.
Structure‐cytotoxicity relationship of di?/tri‐organotin(IV) derivatives of mandelic acid ( 1 – 4 ), L‐proline ( 5 – 7, 15, 16 ), and mixed ligand complexes of latter with 1,10‐phenanthroline ( 8 – 14 ) investigated on the basis of MTT assay against human cancer cell lines, viz. MCF‐7 (mammary cancer), HepG2 (liver cancer) and PC‐3 (prostate cancer) in vitro indicated that all complexes except methyl‐ and octyl‐ analogues displayed potential cytotoxicity. The most active one is dibutyltin(IV) mandelate ( 2 ) exhibiting IC50 2.03 ± 0.40, 0.98 ± 0.23 and 3.86 ± 1.68 μM against MCF‐7, HepG2 and PC‐3, respectively, which is ≈ 15 and 2.5 times against MCF‐7, 20 and 5 times against HepG2 and 5 and ≈ 3 times against PC‐3 more cytotoxic than cis‐platin and 5‐fluorouracil, respectively. Diorganotin(IV) derivatives of mandelic acid are more cytotoxic than triorganotin analogues. Organotin(IV) derivatives of L‐proline (except Bu3Sn(Pro) 16 ) are less cytotoxic than those of mandelic acid but their cytotoxicity is enhanced by complexion with 1,10‐phenanthroline. This may be due to the structural planarity and extended π system of 1,10‐phenanthroline which facilitates their transportation across the cell membrane and enhances the possibility of DNA intercalation over the planar L‐proline ring, and eventually, their DNA binding affinity so as to interfere with the cellular functions of DNA leading to apoptosis. Various biophysical experiments such as DNA fragmentation, acridine orange and comet assays, and flow cytometry assay using annexin V–fluorescein isothiocyanate (FITC) and propidium iodide (PI) have been carried out in order to ascertain their mode of action. The observed results indicated that the major cause of cancer cell death is apoptosis, but a minor role played by necrosis cannot be excluded. It is concluded on the basis of the observed results that the nature and number of organic groups bonded to tin as well as the nature of counter anions play an important role in determining the cytotoxicity of organotin(IV) compounds.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号