首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   2篇
  国内免费   2篇
化学   138篇
晶体学   4篇
力学   11篇
数学   3篇
物理学   61篇
  2023年   6篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   15篇
  2011年   18篇
  2010年   7篇
  2009年   8篇
  2008年   10篇
  2007年   15篇
  2006年   17篇
  2005年   18篇
  2004年   13篇
  2003年   4篇
  2002年   8篇
  2001年   5篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1996年   3篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   4篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有217条查询结果,搜索用时 93 毫秒
1.
Certain metal complexes are known as high-performance CO2 reduction photocatalysts driven by visible light. However, most of them rely on rare, precious metals as principal components, and integrating the functions of light absorption and catalysis into a single molecular unit based on abundant metals remains a challenge. Metal-organic frameworks (MOFs), which can be regarded as intermediate compounds between molecules and inorganic solids, are potential platforms for the construction of a simple photocatalytic system composed only of Earth-abundant nontoxic elements. In this work, we report that a tin-based MOF enables the conversion of CO2 into formic acid with a record high apparent quantum yield (9.8 % at 400 nm) and >99 % selectivity without the need for any additional photosensitizer or catalyst. This work highlights a new MOF with strong potential for photocatalytic CO2 reduction driven by solar energy.  相似文献   
2.
D. Q. Xu  H. Honma  T. Abe 《Shock Waves》1993,3(1):67-72
The direct simulation Monte Carlo (DSMC) method is applied to simulation of nonstationary Mach reflection of strong shock waves. Normally the DSMC method is very time consuming in solving unsteady flow field problems especially for high Mach numbers, because of the necessity of iterative calculations to eliminate the inherent statistical fluctuation caused by a finite sample size. A central weighted smoothing technique is introduced to process the DSMC results, so that the iteration time can be significantly reduced. In spite of some relaxations of the shock wave structure, the smoothing technique is verified to be useful to estima te the flow fields qualitatively and even quantitatively by using a relatively small sample size. The comparison between the present approach and the kineticmodel approach (Xu et al. 1991a, 1991b) on the application to unsteady rarefied flow fields was also carried out.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   
3.
We propose a novel force-field-parametrization procedure that fits the parameters of potential functions in a manner that the pair distribution function (DF) of molecules derived from candidate parameters can reproduce the given target DF. Conventionally, approaches to minimize the difference between the candidate and target DFs employ radial DFs (RDF). RDF itself has been reported to be insufficient for uniquely identifying the parameters of a molecule. To overcome the weakness, we introduce energy DF (EDF) as a target DF, which describes the distribution of the pairwise energy of molecules. We found that the EDF responds more sensitively to a small perturbation in the pairwise potential parameters and provides better fitting accuracy compared to that of RDF. These findings provide valuable insights into a wide range of coarse graining methods, which determine parameters using information obtained from a higher-level calculation than that of the developed force field. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
4.
We propose a unique optical system for measuring the retardation of birefringent films using a pair of liquid crystal (LC) gratings; that is, the examined birefringent films are inserted between two LC gratings. Because the LC grating functions as a polarization beam splitter for circularly polarized light, the proposed system is optically equivalent to the measurement system using a pair of two circular polarizers. First, the polarization splitting performance of the LC grating is discussed. It is found that a sufficiently high voltage (such that the retardation is less than a half wavelength) has to be applied for the almost pure circularly polarized diffracted light. Next, the measurement of the retardation of a homogeneous LC cell as an examined birefringent film was demonstrated using the proposed method. The proposed method is revealed to have the same measurement performance as that of the conventional method using a pair of linear polarizers and has an advantage that there is no need for the optic axis of the test birefringent specimen to be set at a specific angle.  相似文献   
5.
We are developing a daily health monitoring system that uses mobile phones with cameras and analyzes physiological conditions from R, G, and B intensity levels. However, since it is affected by various imaging conditions of the image input, color correction is required for accurate health monitoring. Therefore, we developed and validated a colorcorrection algorithm to derive reliable color information by correcting the spectral reflectance using the Wiener estimation and a color chart.  相似文献   
6.
7.
We present spatiotemporal control of aggregation-induced emission enhancement (AIEE) of a protonated tetraphenylethene derivative by optical manipulation. A single submicrometer-sized aggregate is initially confined by laser irradiation when its fluorescence is hardly detectable. The continuous irradiation of the formed aggregate leads to sudden and rapid growth, resulting in bright yellow fluorescence emission. The fluorescence intensity at the peak wavelength of 540 nm is tremendously enhanced with growth, meaning that AIEE is activated by optical manipulation. Amazingly, the switching on/off of the activation of AIEE is arbitrarily controlled by alternating the laser power. This result means that optical manipulation increases the local concentration, which overcomes the electrostatic repulsion between the protonated molecules, namely, optical manipulation changes the aggregate structure. The dynamics and mechanism in AIEE controlled by optical manipulation will be discussed from the viewpoint of molecular conformation and association depending on the laser power.  相似文献   
8.
Understanding the normal state transport properties in hole-doped high-temperature cuprate superconductors (HTCSs) is a challenging task which has been widely believed to be one of the key steps toward revealing the pairing mechanism of high-temperature superconductivity. Here, we present a true intrinsic and universal doping dependence of in-plane dc conductivity for all underdoped HTCSs. The doping dependence of in-plane dc conductivity normalized to that at optimal doping can be represented by a simple exponential formula. The doping behavior of the square of the nodal Fermi velocity derived by the high-resolution laser-based angle-resolved photoemission spectroscopy in the superconducting state follows reasonably well the universal intrinsic doping behavior. Our findings suggest a commonality of the low-energy quasiparticles both in the normal and superconducting states that place a true universal and stringent constraint on the mechanism of high-temperature superconductivity for HTCSs.  相似文献   
9.
A ring fragmentation and intramolecular azomethine ylide 1,3-dipolar cycloaddition sequence of reactions was successfully used in the preparation of a known (±)-cycloclavine precursor in good overall yield. Results of efforts to incorporate the tetrasubstituted cyclopropane ring present in cycloclavine are also discussed.  相似文献   
10.
Phase separation of gas–liquid and liquid–liquid microflows in microchannels were examined and characterized by interfacial pressure balance. We considered the conditions of the phase separation, where the phase separation requires a single phase flow in each output of the microchannel. As the interfacial pressure, we considered the pressure difference between the two phases due to pressure loss in each phase and the Laplace pressure generated by the interfacial tension at the interface between the separated phases. When the pressure difference between the two phases is balanced by the Laplace pressure, the contact line between the two phases is static. Since the contact angle characterizing the Laplace pressure is restricted to values between the advancing and receding contact angles, the Laplace pressure has a limit. When the pressure difference between the two phases exceeds the limiting Laplace pressure, one of the phases leaks into the output channel of the other phase, and the phase separation fails. In order to experimentally verify this physical picture, microchips were used having a width of 215 μm and a depth of 34 μm for the liquid–liquid microflows, a width of 100 μm and a depth of 45 μm for the gas–liquid microflows. The experimental results of the liquid–liquid microflows agreed well with the model whilst that of the gas–liquid microflows did not agree with the model because of the compressive properties of the gas phase and evaporation of the liquid phase. The model is useful for general liquid–liquid microflows in continuous flow chemical processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号