首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1248篇
  免费   34篇
化学   972篇
晶体学   8篇
力学   13篇
数学   45篇
物理学   244篇
  2023年   8篇
  2022年   7篇
  2021年   19篇
  2020年   28篇
  2019年   25篇
  2018年   9篇
  2017年   11篇
  2016年   17篇
  2015年   32篇
  2014年   35篇
  2013年   69篇
  2012年   90篇
  2011年   95篇
  2010年   46篇
  2009年   58篇
  2008年   81篇
  2007年   77篇
  2006年   62篇
  2005年   56篇
  2004年   48篇
  2003年   35篇
  2002年   35篇
  2001年   20篇
  2000年   20篇
  1999年   8篇
  1998年   8篇
  1997年   8篇
  1996年   10篇
  1995年   8篇
  1994年   11篇
  1993年   10篇
  1992年   13篇
  1991年   14篇
  1990年   12篇
  1989年   9篇
  1988年   15篇
  1987年   20篇
  1986年   9篇
  1985年   11篇
  1984年   10篇
  1983年   6篇
  1982年   7篇
  1981年   13篇
  1980年   7篇
  1979年   10篇
  1978年   14篇
  1977年   9篇
  1976年   11篇
  1974年   8篇
  1973年   11篇
排序方式: 共有1282条查询结果,搜索用时 170 毫秒
1.
The construction of DNA‐encoded chemical libraries (DECLs) crucially relies on the availability of chemical reactions, which are DNA‐compatible and which exhibit high conversion rates for a large number of diverse substrates. In this work, we present our optimization and validation procedures for three copper and palladium‐catalyzed reactions (Suzuki cross‐coupling, Sonogashira cross‐coupling, and copper(I)‐catalyzed alkyne‐azide cycloaddition (CuAAC)), which have been successfully used by our group for the construction of large encoded libraries.  相似文献   
2.
Green (and sustainable?) frame around ‘Inverted America’ (adapted from Torres García, 1943, Museo Juan Manuel Blanes, Montevideo, CC BY 4.0).
  相似文献   
3.
Four new zinc (II) complexes [Zn (HL1H)Br2] (1), [Zn (HL1H)Cl2] (2), [Zn2(HL2)Br3] (3), and [Zn (HL2)Cl] (4) have been synthesized by adopting template synthetic strategy and utilizing two homologous Schiff base ligands (H2L1 = 4-bromo-2-{[2-(2-hydroxyethylamino)-ethylimino]-methyl}-6-methoxyphenol, H2L2 = 4-bromo-2-{[3-(2-hydroxyethylamino)propylimino]methyl}-6-methoxyphenol), differing in one -CH2- unit in the ligating backbone, by adopting template synthetic strategy. All the complexes have been characterized by single crystal X-ray diffraction analysis as well as by other routine physicochemical techniques. Ligand mediated structural variations have been observed and rationalized by density functional theoretical (DFT) calculations. Interaction of the complexes 1–4 with Bovine Serum Albumin protein (BSA) has been studied by different spectroscopic techniques. A complete thermodynamic profile (ΔHo, ΔSo and ΔGo) was evaluated initially from the change in absorption and fluorescence spectra upon addition of BSA to the complexes. Appreciable binding constant values in the range ~ 0.94–4.51 × 104 M−1 indicate efficient binding tendency of the complexes to BSA with the sequence 1 ≅ 2 > 3 ≅ 4. Circular dichroism (CD), isothermal calorimetric titration experiments, molecular docking and molecular dynamics have been performed to gain deep insight into the binding regions of complex 1 to BSA. Experimental evidences suggest an interaction of zinc complexes at the surface of BSA protein and this particular binding has been exploited to determine unknown concentration of BSA protein. For this purpose complex 1 was explored as a BSA protein quantification tool.  相似文献   
4.
It has been established that a newly developed cyclopentadienyl rhodium(III) [CpARhIII] complex, bearing an acidic secondary amide moiety on the Cp ring, is able to catalyze the ortho-bromination of O-phenyl carbamates with N-bromosuccinimide (NBS) at room temperature. The presence of the acidic secondary amide moiety on the CpA ligand accelerates the bromination by the hydrogen bond between the acidic NH group of the CpA ligand and the carbonyl group of NBS.  相似文献   
5.
Metalla-bis-dicarbollides, such as the cobalta-bis-dicarbollide (COSAN) anion [Co(C2B9H11)2], have attracted much attention in biology but a deep understanding of their interactions with cell components is still missing. For this purpose, we studied the interactions of COSAN with the glucose moiety, which is ubiquitous at biological interfaces. Octyl-glucopyranoside surfactant (C8G1) was chosen as a model as it self-assembles in water and creates a hydrated glucose-covered interface. At low COSAN content and below the critical micellar concentration (CMC) of C8G1, COSAN binds to C8G1 monomers through the hydrophobic effect. Above the CMC of C8G1, COSAN adsorbs onto C8G1 micelles through the superchaotropic effect. At high COSAN concentrations, COSAN disrupts C8G1 micelles and the assemblies become similar to COSAN micelles but with a small amount of solubilized C8G1. Therefore, COSAN binds in a versatile way to C8G1 through either the hydrophobic or superchaotropic effect depending on their relative concentrations.  相似文献   
6.
PhI(OTf)2 has been used for the past 30 years as a strong I(III) oxidant for organic and inorganic transformations. It has been reported to be generated in situ from the reactions of either PhI(OAc)2 or PhI=O with two equivalents of trimethylsilyl trifluoromethanesulfonate (TMS-OTf). In this report it is shown that neither of these reactions generate a solution with spectroscopic data consistent with PhI(OTf)2, with supporting theoretical calculations, and thus this compound should not be invoked as the species acting as the oxidant for transformations that have been associated with its use.  相似文献   
7.
To investigate the effect of the surface structure of dye-sensitized photocatalyst nanoparticles, we prepared three types of RuII-photosensitizer (PS)-double-layered Pt-cocatalyst-loaded TiO2 nanoparticles with different surface structures, Zr- RuCP6 -Zr- RuP6 @N wt %Pt-TiO2, RuCP6 -Zr- RuP6 @N wt %Pt-TiO2, and RuCP2 -Zr- RuP6 @N wt %Pt-TiO2 (N=0.2, 1, and 5), and evaluated their photocatalytic H2 evolution activity in the presence of redox-reversible iodide as the electron donor. Although the driving force of the electron injection from I to the photo-oxidized RuIII PS is comparable, the activity increased in the following order: RuCP2 -Zr- RuP6 @1 wt %Pt-TiO2 < RuCP6 -Zr- RuP6 @1 wt %Pt-TiO2 < Zr- RuCP6 -Zr- RuP6 @1 wt %Pt-TiO2. The apparent quantum yield of Zr- RuCP6 -Zr- RuP6 @1 wt %Pt-TiO2 in the first hour reached 1 %. Zeta-potential measurements suggest that the surface Zr4+-phosphate groups attracted I anions to the nanoparticle–solution interface. Our results indicate that the surface modification of dye-sensitized photocatalysts is a promising approach to enhance photocatalytic activity with various redox mediators.  相似文献   
8.
Unprecedented opportunities exist for the generation of advanced nanotechnologies based on synthetic micro/nanomotors (MNMs), such as active transport of medical agents or the removal of pollutants. In this regard, great efforts have been dedicated toward controlling MNM motion (e.g., speed, directionality). This was generally performed by precise engineering and optimizing of the motors′ chassis, engine, powering mode (i.e., chemical or physical), and mechanism of motion. Recently, new insights have emerged to control motors mobility, mainly by the inclusion of different modes that drive propulsion. With high degree of synchronization, these modes work providing the required level of control. In this Minireview, we discuss the diverse factors that impact motion; these include MNM morphology, modes of mobility, and how control over motion was achieved. Moreover, we highlight the main limitations that need to be overcome so that such motion control can be translated into real applications.  相似文献   
9.
The use of N-alkyl imines in decarboxylative Mannich reaction with substituted malonic acids half oxyesters (SMAHOs) has been developed to afford a direct access to secondary β2,3-aminoesters. The transformation occurs under very practical conditions (DABCO as a catalyst in bulk toluene and open to air) and can be performed with a broad range of each substrate in yields of 36 to 97 %. Importantly, the reaction was found to require the use of acidic additives in combination with the organocatalyst to limit the competitive olefination reaction.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号