首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1161篇
  免费   66篇
  国内免费   5篇
化学   946篇
晶体学   1篇
力学   19篇
数学   134篇
物理学   132篇
  2023年   14篇
  2022年   10篇
  2021年   35篇
  2020年   43篇
  2019年   36篇
  2018年   17篇
  2017年   16篇
  2016年   42篇
  2015年   41篇
  2014年   40篇
  2013年   57篇
  2012年   87篇
  2011年   101篇
  2010年   56篇
  2009年   60篇
  2008年   84篇
  2007年   74篇
  2006年   73篇
  2005年   61篇
  2004年   58篇
  2003年   44篇
  2002年   37篇
  2001年   13篇
  2000年   10篇
  1999年   7篇
  1998年   4篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1991年   5篇
  1989年   3篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1970年   4篇
  1948年   2篇
  1939年   2篇
  1936年   3篇
  1933年   4篇
  1929年   2篇
  1927年   2篇
  1884年   1篇
排序方式: 共有1232条查询结果,搜索用时 472 毫秒
1.
Far-red emitting fluorescent labels are highly desirable for spectral multiplexing and deep tissue imaging. Here, we describe the generation of frFAST (far-red Fluorescence Activating and absorption Shifting Tag), a 14-kDa monomeric protein that forms a bright far-red fluorescent assembly with (4-hydroxy-3-methoxy-phenyl)allylidene rhodanine (HPAR-3OM). As HPAR-3OM is essentially non-fluorescent in solution and in cells, frFAST can be imaged with high contrast in presence of free HPAR-3OM, which allowed the rapid and efficient imaging of frFAST fusions in live cells, zebrafish embryo/larvae, and chicken embryos. Beyond enabling the genetic encoding of far-red fluorescence, frFAST allowed the design of a far-red chemogenetic reporter of protein–protein interactions, demonstrating its great potential for the design of innovative far-red emitting biosensors.  相似文献   
2.
3.
Metal‐based catalysts and initiators have played a pivotal role in the ring‐opening polymerization (ROP) of cyclic esters, thanks to their high activity and remarkable ability to control precisely the architectures of the resulting polyesters in terms of molar mass, dispersity, microstructure, or tacticity. Today, after two decades of extensive research, the field is slowly reaching maturity. However, several challenges remain, while original concepts have emerged around new types or new applications of catalysis. This Review is not intended to comprehensively cover all of these aspects. Rather, it provides a personal overview of the very recent progress achieved in some selected, important aspects of ROP catalysis—stereocontrol and switchable catalysis. Hence, the first part addresses the development of new metal‐based catalysts for the isoselective ROP of racemic lactide towards stereoblock copolymers, and the use of syndioselective ROP metal catalysts to control the monomer sequence in copolymers. A second part covers the development of ROP catalysts—primarily metal‐based catalysts, but also organocatalysts—that can be externally regulated by the use of chemical or photo stimuli to switch them between two states with different catalytic abilities. Current challenges and opportunities are highlighted.  相似文献   
4.
5.
6.
This study investigates the spontaneous grafting of different para-substituted phenyl groups on carbon and metallic surfaces from diazonium salts solutions. Glassy carbon, nickel, zinc and iron plates were allowed to react with an acetonitrile solution of aryldiazonium tetrafluoroborate salt by simple dipping. The surfaces were characterized before and after their immersion by XPS and AFM to evidence the formation of a coating on the different materials. The results are indicative of the presence of substituted phenyl groups on all the investigated surfaces. This study also aims at correlating grafting efficiency with metal reactivities and diazonium salt electronic properties by means of AFM and FT-IRRAS. For this purpose, zinc and nickel were chosen due to their opposite reducing properties and two diazonium salts were selected with electron-donor or -withdrawing para-substituents. The results tend to indicate that redox properties of both partners (diazonium + metal) are of prime importance for grafting to occur.  相似文献   
7.
Friction‐deposited layers of atactic polystyrene (PS) on inert and OH‐grafted gold substrates were the subject of this study to establish a relationship between the friction process and the resulting anisotropy of the transferred polymer chains. We show, by using polarization‐modulation infrared reflection‐absorption spectroscopy that the deposited PS chains involve an anisotropy in which PS main backbone is rather perpendicular to the friction support, fact that is surprising when compared with the majority of polymers where the anisotropy is along the sliding direction. Moreover, our calculation of the orientation angles revealed that PS chains are more perpendicular in the transferred layers than in spin‐coated films. This particular anisotropy is probably due to a parallel reorientation of the phenyl ring on the friction support whatever the surface chemistry is. On the other hand, this study was useful to rectify the assignment of infrared bands unclearly reported in the literature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3272–3281, 2006  相似文献   
8.
9.
The green complex S=1 [(TPEN)FeO]2+ [TPEN=N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine] has been obtained by treating the [(TPEN)Fe]2+ precursor with meta-chloroperoxybenzoic acid (m-CPBA). This high-valent complex belongs to the emerging family of synthetic models of Fe(IV)=O intermediates invoked during the catalytic cycle of biological systems. This complex exhibits spectroscopic characteristics that are similar to those of other models reported recently with a similar amine/pyridine environment. Thanks to its relative stability, vibrational data in solution have been obtained by Fourier transform infrared. A comparison of the Fe=O and Fe=(18)O wavenumbers reveals that the Fe-oxo vibration is not a pure one. The ability of the green complex to oxidize small organic molecules has been studied. Mixtures of oxygenated products derived from two- or four-electron oxidations are obtained. The reactivity of this [FeO]2+ complex is then not straightforward, and different mechanisms may be involved.  相似文献   
10.
As part of a research program on neurotransmitters in a biological fluid, the fragmentations characterising catecholamines protonated under electrospray ionisation (ESI) conditions, under low collision energy in a triple-quadrupole mass spectrometer, were investigated. The decompositions of protonated noradrenaline (VH) and normetanephrine (VIH) were studied. Both precursor ions eliminate first H2O at very low collision energy, and the fragmentations of [MH-H2O]+ occur at higher collision energy. The breakdown graphs of [MH-H2O]+ ions, with collision energy varying from 0-40 eV in the laboratory frame, are presented. [VIH-H2O]+ ions lose competitively NH3 and CH3OH. For [VH-H2O]+ the loss of NH3 is dominant while H2O is eliminated at very low abundance at all collision energies. All of these secondary fragmentations are followed at higher collision energies by elimination of CO. These fragmentations are interpreted by means of ab initio calculations up to the B3LYP/6-311+G(2d,2p) level of theory. The elimination of H2O requires first the isomerisation of N-protonated forms, chosen as energy references, to O-protonated forms. The isomerisation barriers are calculated to be lower than 81 kJ/mol above the N-protonated forms. The elimination of NH3 from [MH-H2O]+ requires first the migration, via a cyclisation, of the amine function from the linear chain to the aromatic ring in order to prevent the formation of unstable disubstituted carbocations in the ring. The barriers associated with the loss of NH3 are located 220 and 233 kJ/mol above VH and 219 kJ/mol above VIH. The energy barrier for the loss of ROH is located 236 and 228 kJ/mol above VH and VIH, respectively. The absence of ions corresponding to [VH-2H2O]+ is due to a parasitic mechanism with an activation barrier lower than 236 kJ/mol that leads to a stable species unable to fragment, thus preventing the second loss of H2O. Losses of CO following the secondary fragmentations involve activation barriers higher than 330 kJ/mol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号