首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The dynamic binding status between the thrombin and its G‐quadruplex aptamers and the stability of its interaction partners were probed using our previously established fluorescence‐coupled capillary electrophoresis method. A 29‐nucleic acid thrombin binding aptamer was chosen as a model to study its binding affinity with the thrombin ligand. First, the effects of the cations on the formation of G‐quadruplex from unstructured 29‐nucleic acid thrombin binding aptamer were examined. Second, the rapid binding kinetics between the thrombin and 6‐carboxyfluorescein labeled G‐quadruplex aptamer was measured. Third, the stability of G‐quadruplex aptamer–thrombin complex was also examined in the presence of the interfering species. Remarkably, it was found that the complementary strand of 29‐nucleic acid thrombin binding aptamer could compete with G‐quadruplex aptamer and thus disassociated the G‐quadruplex structure into an unstructured aptamer. These data suggest that our in‐house established fluorescence‐coupled capillary electrophoresis assay could be applied to binding studies of the G‐quadruplex aptamers, thrombin, and their ligands, while overcoming the complicated and costly approaches currently available.  相似文献   

2.
Fifteen complexes of palladium, platinum, and copper, featuring five different N‐donor tridentate (terpyridine‐like) ligands, were prepared with the aim of testing their G‐quadruplex–DNA binding properties. The fluorescence resonance energy transfer melting assay indicated a striking positive effect of palladium on G‐quadruplex DNA stabilization compared with platinum and copper, as well as an influence of the structure of the organic ligand. Putative binding modes (noncoordinative π stacking and base coordination) of palladium and platinum complexes were investigated by ESI‐MS and UV/Vis spectroscopy experiments, which all revealed a greater ability of palladium complexes to coordinate DNA bases. In contrast, platinum compounds tend to predominantly bind to quadruplex DNA in their aqua form by noncoordinative interactions. Remarkably, complexes of [Pd(ttpy)] and [Pd(tMebip)] (ttpy=tolylterpyridine, tMebip=2,2′‐(4‐p‐tolylpyridine‐2,6‐diyl)bis(1‐methyl‐1H‐benzo[d]imidazole)) coordinate efficiently G‐quadruplex structures at room temperature in less than 1 h, and are more efficient than their platinum counterparts for inhibiting the growth of cancer cells. Altogether, these results demonstrate that both the affinity for G‐quadruplex DNA and the binding mode of metal complexes can be modulated by modifying either the metal or the organic ligand.  相似文献   

3.
We have developed a straightforward synthetic pathway to a set of six photoactivatable G‐quadruplex ligands with a validated G4‐binding motif (the bisquinolinium pyridodicarboxamide PDC‐360A) tethered through various spacers to two different photo‐cross‐linking groups: benzophenone and an aryl azide. The high quadruplex‐versus‐duplex selectivity of the PDC core was retained in the new derivatives and resulted in selective alkylation of two well‐known G‐quadruplexes (human telomeric G4 and oncogene promoter c‐myc G4) under conditions of harsh competition. The presence of two structurally different photoactivatable functions allowed the selective alkylation of G‐quadruplex structures at specific nucleobases and irreversible G4 binding. The topology and sequence of the quadruplex matrix appear to influence strongly the alkylation profile, which differs for the telomeric and c‐myc quadruplexes. The new compounds are photoactive in cells and thus provide new tools for studying G4 biology.  相似文献   

4.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

5.
G‐rich nucleic acid sequences with the potential to form G‐quadruplex structures are common in biologically important regions. Most of these sequences are present with their complementary strands, so the development of a sensitive biosensor to distinguish G‐quadruplex and duplex structures and to determine the competitive ability of quadruplex to duplex structures has received a great deal of attention. In this work, the interactions between two triphenylmethane dyes (malachite green (MG) and crystal violet (CV)) and G‐quadruplex, duplex, or single‐stranded DNAs were studied by fluorescence spectroscopy and energy‐transfer fluorescence spectroscopy. Good discrimination between quadruplexes and duplex or single‐stranded DNAs can be achieved by using the fluorescence spectrum of CV or the energy‐transfer fluorescence spectra of CV and MG. In addition, by using energy‐transfer fluorescence titrations of CV with G‐quadruplexes, the binding‐stoichiometry ratios of CV to G‐quadruplexes can be determined. By using the fluorescence titrations of G‐quadruplex–CV complexes with C‐rich complementary strands, the fraction of G‐rich oligonucleotide that engages in G‐quadruplex structures in the presence of the complementary sequence can be measured. This study may provide a simple method for discrimination between quadruplexes and duplex or single‐stranded DNAs and for measuring G‐quadruplex percentages in the presence of the complementary C‐rich sequences.  相似文献   

6.
A new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular‐like G‐quadruplex motif 1 (parallel G‐quadruplex conformation), an intramolecular G‐quadruplex 2 , and a duplex DNA 3 have been designed and developed. The method is based on the concept of template‐assembled synthetic G‐quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G‐quadruplex conformation. Various known G‐quadruplex ligands have been used to investigate the affinities of ligands for intermolecular 1 and intramolecular 2 DNA quadruplexes. As anticipated, ligands displaying a π‐stacking binding mode showed a higher binding affinity for intermolecular‐like G‐quadruplexes 1 , whereas ligands with other binding modes (groove and/or loop binding) showed no significant difference in their binding affinities for the two quadruplexes 1 or 2 . In addition, the present method has also provided information about the selectivity of ligands for G‐quadruplex DNA over the duplex DNA. A numerical parameter, termed the G‐quadruplex binding mode index (G4‐BMI), has been introduced to express the difference in the affinities of ligands for intermolecular G‐quadruplex 1 against intramolecular G‐quadruplex 2 . The G‐quadruplex binding mode index (G4‐BMI) of a ligand is defined as follows: G4‐BMI=KDintra/KDinter, where KDintra is the dissociation constant for intramolecular G‐quadruplex 2 and KDinter is the dissociation constant for intermolecular G‐quadruplex 1 . In summary, the present work has demonstrated that the use of parallel‐constrained quadruplex topology provides more precise information about the binding modes of ligands.  相似文献   

7.
In an effort to explore the effect of ancillary ligands on the spectral properties and overall G‐quadruplex DNA binding behavior, two new ruthenium(II) complexes [Ru(phen)2(dppzi)]2+ ( 1 ) and [Ru(dmp)2(dppzi)]2+ ( 2 ) (phen=1,10‐phenanthroline, dmp=2,9‐dimethyl‐1,10‐phenanthroline, dppzi=dipyrido[3,2‐a:2′,3′‐c]phenazine‐10,11‐imidazole) were prepared. Complex 1 can emit luminescence in the absence and presence of G‐quadruplexes DNA. However, with ?CH3 substituent on the 2‐ and 9‐positions of the phen ancillary ligand, no detectable luminescence is observed for complex 2 in any organic solvent or in the absence and/or presence of G‐quadruplex DNA. Experimental and molecular docking studies indicated that both complexes interacted with the human telomeric repeat AG3(T2AG3)3 (22AG) G‐quadruplex with the stoichiometric ratio of 1:1, but the two complexes showed different G‐quadruplex DNA binding affinity. Complex 1 binds to the G‐quadruplexes DNA more tightly than complex 2 does. Our results demonstrate that methyl groups on the phen ancillary ligand significantly affect the spectral properties and the overall DNA binding behavior of the complexes. Such difference in spectral properties and DNA binding affinities of these two complexes can be reasonably explained by DFT/TD‐DFT calculations. This work provides guidance not only on exploring the G‐quadruplexes DNA binding behavior of complexes, but also understanding the unique luminescence mechanism.  相似文献   

8.
An NMR structural study of the interaction between a small‐molecule optical probe (DAOTA‐M2) and a G‐quadruplex from the promoter region of the c‐myc oncogene revealed that they interact at 1:2 binding stoichiometry. NMR‐restrained structural calculations show that binding of DAOTA‐M2 occurs mainly through π–π stacking between the polyaromatic core of the ligand and guanine residues of the outer G‐quartets. Interestingly, the binding affinities of DAOTA‐M2 differ by a factor of two for the outer G‐quartets of the unimolecular parallel G‐quadruplex under study. Unrestrained MD calculations indicate that DAOTA‐M2 displays significant dynamic behavior when stacked on a G‐quartet plane. These studies provide molecular guidelines for the design of triangulenium derivatives that can be used as optical probes for G‐quadruplexes.  相似文献   

9.
Guanine‐rich sequence motifs, which contain tracts of three consecutive guanines connected by single non‐guanine nucleotides, are abundant in the human genome and can form a robust G‐quadruplex structure with high stability. Herein, by using NMR spectroscopy, we investigate the equilibrium between monomeric and 5′–5′ stacked dimeric propeller‐type G‐quadruplexes that are formed by DNA sequences containing GGGT motifs. We show that the monomer–dimer equilibrium depends on a number of parameters, including the DNA concentration, DNA flanking sequences, the concentration and type of cations, and the temperature. We report on the high‐definition structure of a simple monomeric G‐quadruplex containing three single‐residue loops, which could serve as a reference for propeller‐type G‐quadruplex structures in solution.  相似文献   

10.
A new folding intermediate of Oxytricha nova telomeric Oxy‐1.5 G‐quadruplex was characterized in aqueous solution using NMR spectroscopy, native gel electrophoresis, thermal differential spectra (TDS), CD spectroscopy, and differential scanning calorimetry (DSC). NMR experiments have revealed that this intermediate (i‐Oxy‐1.5) exists in two symmetric bimolecular forms in which all guanine bases are involved in GG N1‐carbonyl symmetric base pairs. Kinetic analysis of K+‐induced structural transitions shows that folding of Oxy‐1.5 G‐quadruplex from i‐Oxy‐1.5 is much faster and proceeds through less intermediates than folding from single strands. Therefore, a new folding pathway of Oxy‐1.5 G‐quadruplex is proposed. This study provides evidence that G‐rich DNA sequences can self‐assemble into specific pre‐organized DNA structures that are predisposed to fold into G‐quadruplex when interacting with cations such as potassium ions.  相似文献   

11.
The interactions of three cationic distyryl dyes, namely 2,4‐bis(4‐dimethylaminostyryl)‐1‐methylpyridinium ( 1 a ), its derivative with a quaternary aminoalkyl chain ( 1 b ), and the symmetric 2,6‐bis(4‐dimethylaminostyryl)‐1‐methylpyridinium ( 2 a ), with several quadruplex and duplex nucleic acids were studied with the aim to establish the influence of the geometry of the dyes on their DNA‐binding and DNA‐probing properties. The results from spectrofluorimetric titrations and thermal denaturation experiments provide evidence that asymmetric (2,4‐disubstituted) dyes 1 a and 1 b bind to quadruplex DNA structures with a near‐micromolar affinity and a fair selectivity with respect to double‐stranded (ds) DNA [Ka(G4)/Ka(ds)=2.5–8.4]. At the same time, the fluorescence of both dyes is selectively increased in the presence of quadruplex DNAs (more than 80–100‐fold in the case of human telomeric quadruplex), even in the presence of an excess of competing double‐stranded DNA. This optical selectivity allows these dyes to be used as quadruplex‐DNA‐selective probes in solution and stains in polyacrylamide gels. In contrast, the symmetric analogue 2 a displays a strong binding preference for double‐stranded DNA [Ka(ds)/Ka(G4)=40–100), presumably due to binding in the minor groove. In addition, 2 a is not able to discriminate between quadruplex and duplex DNA, as its fluorescence is increased equally well (20–50‐fold) in the presence of both structures. This study emphasizes and rationalizes the strong impact of subtle structural variations on both DNA‐recognition properties and fluorimetric response of organic dyes.  相似文献   

12.
The interactions of a dicarbocyanine dye 3,3′‐diethylthiadicarbocyanine, DiSC2(5) , with DNA G‐quadruplexes were studied by means of a combination of various spectroscopic techniques. Aggregation of excess dye as a result of its positive charge is promoted by the presence of the polyanionic quadruplex structure. Specific high‐affinity binding to the parallel quadruplex of the MYC promoter sequence involves stacking of DiSC2(5) on the external G‐tetrads; the 5′‐terminal tetrad is the favored binding site. Significant energy transfer between DNA and the dye in the UV spectral region is observed upon DiSC2(5) binding. The transfer efficiency strongly depends on the DNA secondary structure as well as on the G‐quadruplex topology. These photophysical features enable the selective detection of DNA quadruplexes through sensitized DiSC2(5) fluorescence in the visible region.  相似文献   

13.
Polymorphic DNA G‐quadruplex recognition has attracted great interest in recent years. The strong binding affinity and potential enantioselectivity of chiral [Ru(bpy)2(L)]2+ (L=dipyrido[3,2‐a:2′,3′‐c]phenazine, dppz‐10,11‐imidazolone; bpy=2,2′‐bipyridine) prompted this investigation as to whether the two enantiomers, Δ and Λ, can show different effects on diverse structures with a range of parallel, antiparallel and mixed parallel/antiparallel G‐quadruplexes. These studies provide a striking example of chiral‐selective recognition of DNA G‐quadruplexes. As for antiparallel (tel‐Na+) basket G‐quadruplex, the Λ enantiomers bind stronger than the Δ enantiomers. Moreover, the behavior reported here for both enantiomers stands in sharp contrast to B‐DNA binding. The chiral selectivity toward mixed parallel/antiparallel (tel‐K+) G‐quadruplex of both compounds is weak. Different loop arrangements can change chiral complex selectivity for both antiparallel and mixed parallel/antiparallel G‐quadruplex. Whereas both Δ and Λ isomers bind to parallel G‐quadruplexes with comparable affinity, no appreciable stereoselective G‐quadruplex binding of the isomers was observed. In addition, different binding stoichiometries and binding modes for Δ and Λ enantiomers were confirmed. The results presented here indicate that chiral selective G‐quadruplex binding is not only related to G‐quadruplex topology, but also to the sequence and the loop constitution.  相似文献   

14.
Aptamer‐based biosensors offer promising perspectives for high performance, specific detection of proteins. The thrombin binding aptamer (TBA) is a G‐quadruplex‐forming DNA sequence, which is frequently elongated at one end to increase its analytical performances in a biosensor configuration. Herein, we investigate how the elongation of TBA at its 5′ end affects its structure and stability. Circular dichroism spectroscopy shows that TBA folds in an antiparallel G‐quadruplex conformation with all studied cations (Ba2+, Ca2+, K+, Mg2+, Na+, NH4+, Sr2+ and the [Ru(NH3)6]2+/3+ redox marker) whereas other structures are adopted by the elongated aptamers in the presence of some of these cations. The stability of each structure is evaluated on the basis of UV spectroscopy melting curves. Thermal difference spectra confirm the quadruplex character of all conformations. The elongated sequences can adopt a parallel or an antiparallel structure, depending on the nature of the cation; this can potentially confer an ion‐sensitive switch behavior. This switch property is demonstrated with the frequently employed redox complex [Ru(NH3)6]3+, which induces the parallel conformation at very low concentrations (10 equiv per strand). The addition of large amounts of K+ reverts the conformation to the antiparallel form, and opens interesting perspectives for electrochemical biosensing or redox‐active responsive devices.  相似文献   

15.
DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single‐molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G‐quadruplex structures in the presence of monovalent cations (e.g. Na+ and K+) is currently used for the detection of K+ ions, however, with insufficient selectivity towards Na+. By means of FRET between two suitable dyes attached to the 3′‐ and 5′‐ends of telomeric DNA we demonstrate that the formation of G‐quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions.  相似文献   

16.
Quadruplex DNA structures are attracting an enormous interest in many areas of chemistry, ranging from chemical biology, supramolecular chemistry to nanoscience. We have prepared carbohydrate–DNA conjugates containing the oligonucleotide sequences of G‐quadruplexes (thrombin binding aptamer (TBA) and human telomere (TEL)), measured their thermal stability and studied their structure in solution by using NMR and molecular dynamics. The solution structure of a fucose–TBA conjugate shows stacking interactions between the carbohydrate and the DNA G‐tetrad in addition to hydrogen bonding and hydrophobic contacts. We have also shown that attaching carbohydrates at the 5′‐end of a quadruplex telomeric sequence can alter its folding topology. These results suggest the possibility of modulating the folding of the G‐quadruplex by linking carbohydrates and have clear implications in molecular recognition and the design of new G‐quadruplex ligands.  相似文献   

17.
Mechanical anisotropy is an essential property for biomolecules to assume structural and functional roles in mechanobiology. However, there is insufficient information on the mechanical anisotropy of ligand–biomolecule complexes. Herein, we investigated the mechanical property of individual human telomeric G‐quadruplexes bound to telomestatin, using optical tweezers. Stacking of the ligand to the G‐tetrad planes changes the conformation of the G‐quadruplex, which resembles a balloon squeezed in certain directions. Such a squeezed balloon effect strengthens the G‐tetrad planes, but dislocates and weakens the loops in the G‐quadruplex upon ligand binding. These dynamic interactions indicate that the binding between the ligand and G‐quadruplex follows the induced‐fit model. We anticipate that the altered mechanical anisotropy of the ligand–G‐quadruplex complex can add additional level of regulations on the motor enzymes that process DNA or RNA molecules.  相似文献   

18.
A reverse‐binding‐selectivity between monovalent and divalent cations was observed for two different self‐assembly G16‐hexadecamer and G8‐octamer systems. The dissociation constant between G4‐quadruplex and monomer was calculated via VT‐1H NMR experiments. Quantitative energy profiles revealed entropy as the key factor for the weaker binding toward Ba2+ compared with K+ in the G8‐octamer system despite stronger ion‐dipole interactions. This study is the first direct comparison of the G4‐quartet binding affinity between mono and divalent cations and will benefit future applications of G‐quadruplex‐related research. Further competition experiments between the G8‐octamer and 18‐crown‐6 with K+ demonstrated the potential of this G8 system as a new potassium receptor.  相似文献   

19.
The topological diversity of DNA G‐quadruplexes may play a crucial role in its biological function. Reversible control over a specific folding topology was achieved by the synthesis of a chiral, glycol‐based pyridine ligand and its fourfold incorporation into human telomeric DNA by solid‐phase synthesis. Square‐planar coordination to a CuII ion led to the formation of a highly stabilizing intramolecular metal–base tetrad, substituting one G‐tetrad in the parent unimolecular G‐quadruplex. For the Tetrahymena telomeric repeat, CuII‐triggered switching from a hybrid‐dominated conformer mixture to an antiparallel topology was observed. CuII‐dependent control over a protein–G‐quadruplex interaction was shown for the thrombin–tba pair (tba=thrombin‐binding aptamer).  相似文献   

20.
G‐quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G‐quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE , which showed distinguishable fluorescence lifetime responses between G‐quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf) enhancement upon G‐quadruplex binding. We determined two NBTE ‐G‐quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G‐quadruplexes using three arms through π–π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G‐quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G‐quadruplex DNA in live cells with NBTE and found G‐quadruplex DNA content in cancer cells is 4‐fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号