首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3067篇
  免费   199篇
  国内免费   18篇
化学   2417篇
晶体学   23篇
力学   138篇
数学   219篇
物理学   487篇
  2023年   16篇
  2022年   14篇
  2021年   48篇
  2020年   61篇
  2019年   60篇
  2018年   38篇
  2017年   40篇
  2016年   118篇
  2015年   96篇
  2014年   136篇
  2013年   197篇
  2012年   293篇
  2011年   279篇
  2010年   203篇
  2009年   162篇
  2008年   243篇
  2007年   210篇
  2006年   194篇
  2005年   170篇
  2004年   139篇
  2003年   112篇
  2002年   99篇
  2001年   60篇
  2000年   29篇
  1999年   25篇
  1998年   15篇
  1997年   14篇
  1996年   29篇
  1995年   16篇
  1994年   19篇
  1993年   16篇
  1992年   11篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1985年   9篇
  1984年   4篇
  1983年   7篇
  1982年   8篇
  1981年   8篇
  1980年   7篇
  1979年   5篇
  1978年   4篇
  1977年   8篇
  1976年   5篇
  1975年   2篇
  1974年   6篇
  1972年   2篇
排序方式: 共有3284条查询结果,搜索用时 31 毫秒
1.
This paper addresses the problem of global robust fault accommodation tracking for a class of uncertain nonlinear systems with unknown powers and actuator faults. It is assumed that the powers of the concerned system are unknown time-varying functions, all system nonlinearities are unknown, and unknown actuator faults depend on the time-varying power of a control input. A fault accommodation state-feedback controller is explicitly constructed based on the nonlinear error transformation technique using time-varying performance functions. Global tracking with the preselected performance bounds is established in the presence of unknown time-varying powers and unexpected actuator faults. Different from the previous results dealing with the problem of unknown time-varying powers, the proposed tracking strategy does not require the knowledge of the bounds of the time-varying powers and the nonlinear bounding functions of system nonlinearities. An underactuated mechanical system is simulated to validate the effectiveness of the proposed theoretical approach.  相似文献   
2.
In this paper,the methodology of the directed relation graph with error propagation and sensitivity analysis(DRGEPSA),proposed by Niemeyer et al.(Combust Flame 157:1760-1770.2010).and its differences to the original directed relation graph method are described.Using DRGEPSA,the detailed mechanism of ethylene containing 71 species and 395 reaction steps is reduced to several skeletal mechanisms with different error thresholds.The 25-species and 131-step mechanism and the 24-species and115-step mechanism are found to be accurate for the predictions of ignition delay time and laminar flame speed.Although further reduction leads to a smaller skeletal mechanism with 19 species and 68 steps,it is no longer able to represent the correct reaction processes.With the DRGEPSA method,a detailed mechanism for n-dodecane considering low-temperature chemistry and containing 2115 species and8157 steps is reduced to a much smaller mechanism with249 species and 910 steps while retaining good accuracy.If considering only high-temperature(higher than 1000 K)applications,the detailed mechanism can be simplified to even smaller mechanisms with 65 species and 340 steps or48 species and 220 steps.Furthermore,a detailed mechanism for a kerosene surrogate having 207 species and 1592 steps is reduced with various error thresholds and the results show that the 72-species and 429-step mechanism and the66-species and 392-step mechanism are capable of predicting correct combustion properties compared to those of the detailed mechanism.It is well recognized that kinetic mechanisms can be effectively used in computations only after they are reduced to an acceptable size level for computation capacity and at the same time retaining accuracy.Thus,the skeletal mechanisms generated from the present work are expected to be useful for the application of kinetic mechanisms of hydrocarbons to numerical simulations of turbulent or supersonic combustion.  相似文献   
3.
The first total synthesis of glycocin F, a uniquely diglycosylated antimicrobial peptide bearing a rare S‐linked N‐acetylglucosamine (GlcNAc) moiety in addition to an O‐linked GlcNAc, has been accomplished using a native chemical ligation strategy. The synthetic and naturally occurring peptides were compared by HPLC, mass spectrometry, NMR and CD spectroscopy, and their stability towards chymotrypsin digestion and antimicrobial activity were measured. This is the first comprehensive structural and functional comparison of a naturally occurring glycocin with an active synthetic analogue.  相似文献   
4.
5.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
6.
7.
Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal–organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni–MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2. Further 129Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.  相似文献   
8.
We synthesized two new alternating polymers, namely P(Tt‐FQx) and P(Tt‐DFQx) , incorporating electron rich tri‐thiophene and electron deficient 6‐fluoroquinoxaline or 6,7‐difluoroquinoxaline derivatives. Both polymers P(Tt‐FQx) and P(Tt‐DFQx) exhibited high thermal stabilities and the estimated 5% weight loss temperatures are 425 and 460 °C, respectively. Polymers P(Tt‐FQx) and P(Tt‐DFQx) displayed intense absorption band between 450 and 700 nm with an optical band gap (Eg) of 1.78 and 1.80 eV, respectively. The determined highest occupied/lowest unoccupied molecular orbital's (HOMO/LUMO) of P(Tt‐DFQx) (?5.48 eV/?3.68 eV) are slightly deeper than those of P(Tt‐FQx) ( ?5.32 eV/?3.54 eV). The polymer solar cells fabricated with a device structure of ITO/PEDOT:PSS/ P(Tt‐FQx) or P(Tt‐DFQx) :PC70BM (1:1.5 wt %) + 3 vol % DIO/Al offered a maximum power conversion efficiency (PCE) of 3.65% with an open‐circuit voltage (Voc) of 0.59 V, a short‐circuit current (Jsc) of 10.65 mA/cm2 and fill factor (FF) of 59% for P(Tt‐FQx) ‐based device and a PCE of 4.36% with an Voc of 0.69 V, a Jsc of 9.92 mA/cm2, and FF of 63% for P(Tt‐DFQx) ‐based device. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 545–552  相似文献   
9.
The original Sasol catalytic system for ethylene tetramerization is composed of a Cr source, a PNP ligand, and MAO (methylaluminoxane). The use of expensive MAO in excess has been a critical concern in commercial operation. Many efforts have been made to replace MAO with non‐coordinating anions (e.g., [B(C6F5)4]?); however, most of such attempts were unsuccessful. Herein, an extremely active catalytic system that avoids the use of MAO is presented. The successive addition of two equivalent [H(OEt2)2]+[B(C6F5)4]? and one equivalent CrCl3(THF)3 to (acac)AlEt2 and subsequent treatment with a PNP ligand [CH3(CH2)16]2C(H)N(PPh2)2 ( 1 ) yielded a complex presumably formulated as [ 1 ‐CrAl (acac)Cl3(THF)]2+[B(C6F5)4]?2, which exhibited high activity when combined with iBu3Al (1120 kg/g‐Cr/h; ~4 times that of the original Sasol system composed of Cr (acac)3, iPrN(PPh2)2, and MAO). Via the introduction of bulky trialkylsilyl substituents such as –SiMe3, –Si(nBu)3, or –SiMe2(CH2)7CH3 at the para‐position of phenyl groups in 1 (i.e., by using [CH3(CH2)16]2C(H)N[P(C6H4p‐SiR3)2]2 instead of 1 ), the activities were dramatically improved, i.e., tripled (2960–3340 kg/g‐Cr/h; more than 10 times that of the original Sasol system). The generation of significantly less PE (<0.2 wt%) even at a high temperature is another advantage achieved by the introduction of bulky trialkylsilyl substituents. NMR studies and DFT calculations suggest that increase of the steric bulkiness on the alkyl‐N and P‐aryl moieties restrict the free rotation around (alkyl)N–P (aryl) bonds, which may cause the generation of more robust active species in higher proportion, leading to extremely high activity along with the generation of a smaller amount of PE.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号