首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   21篇
化学   289篇
晶体学   1篇
力学   1篇
数学   17篇
物理学   8篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   10篇
  2019年   13篇
  2016年   8篇
  2015年   13篇
  2014年   9篇
  2013年   11篇
  2012年   26篇
  2011年   25篇
  2010年   6篇
  2009年   8篇
  2008年   19篇
  2007年   26篇
  2006年   22篇
  2005年   27篇
  2004年   14篇
  2003年   11篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1971年   2篇
  1968年   3篇
排序方式: 共有316条查询结果,搜索用时 15 毫秒
1.
Ruthenium-catalyzed hydrogenation of carbon dioxide to formic acid was theoretically investigated with DFT and MP4(SDQ) methods, where a real catalyst, cis-Ru(H)2(PMe3)3, was employed in calculations and compared with a model catalyst, cis-Ru(H)2(PH3)3. Significant differences between the real and model systems are observed in CO2 insertion into the Ru(II)-H bond, isomerization of a ruthenium(II) eta1-formate intermediate, and metathesis of the eta1-formate intermediate with a dihydrogen molecule. All these reactions more easily occur in the real system than in the model system. The differences are interpreted in terms that PMe3 is more donating than PH3 and the trans-influence of PMe3 is stronger than that of PH3. The rate-determining step is the CO2 insertion into the Ru(II)-H bond. Its deltaG(o++) value is 16.8 (6.8) kcal/mol, where the value without parentheses is calculated with the MP4(SDQ) method and that in parentheses is calculated with the DFT method. Because this insertion is considerably endothermic, the coordination of the dihydrogen molecule with the ruthenium(II)-eta1-formate intermediate must necessarily occur to suppress the deinsertion. This means that the reaction rate increases with increase in the pressure of dihydrogen molecule, which is consistent with the experimental results. Solvent effects were investigated with the DPCM method. The activation barrier and reaction energy of the CO2 insertion reaction moderately decrease in the order gas phase > n-heptane > THF, while the activation barrier of the metathesis considerably increases in the order gas phase < n-heptane < THF. Thus, a polar solvent should be used because the insertion reaction is the rate-determining step.  相似文献   
2.
Since the first heavy alkene analogues of germanium and tin were isolated in 1976, followed by West''s disilene in 1981, the chemistry of stable group 14 dimetallenes and dimetallynes has advanced immensely. Recent developments in this field veered the focus from the isolation of novel bonding motifs to mimicking transition metals in their ability to activate small molecules and perform catalysis. The potential of these homonuclear multiply bonded compounds has been demonstrated numerous times in the activation of H2, NH3, CO2 and other small molecules. Hereby, the strong relationship between structure and reactivity warrants close attention towards rational ligand design. This minireview provides an overview on recent developments in regard to bond activation with group 14 dimetallenes and dimetallynes with the perspective of potential catalytic applications of these compounds.

This minireview highlights the recent advances in small molecule activation and catalytic applications of homonuclear dimetallenes, dimetallynes and interconnected bismetallylenes of heavier group 14 elements.  相似文献   
3.
Enantioselective reductions of prociral ketones with chiral hydride reagent prepared from optically active 2,2′-diamino-6,6′-dimethylbiphenyl and lithium aluminum hydride were accomplished in O.Y. more than 50%.  相似文献   
4.
Main group multiple bonds have proven their ability to act as transition metal mimics in the last few decades. However, catalytic application of these species is still in its infancy. Herein we report the second neutral NHC-stabilised dialumene species by use of a supporting aryl ligand (3). Different to the trans-planar silyl-substituted dialumene (3Si), compound 3 features a trans-bent and twisted geometry. The differences between the two dialumenes are explored computationally (using B3LYP-D3/6-311G(d)) as well as experimentally. A high influence of the ligand''s steric demand on the structural motif is revealed, giving rise to enhanced reactivity of 3 enabled by a higher flexibility in addition to different polarisation of the aluminium centres. As such, facile activation of dihydrogen is now achievable. The influence of ligand choice is further implicated in two different catalytic reactions; not only is the aryl-stabilised dialumene more catalytically active but the resulting product distributions also differ, thus indicating the likelihood of alternate mechanisms simply through a change of supporting ligand.

Ligand controlled reactivity: a trans-bent and twisted geometry enables dihydrogen activation and enhanced catalytic activity for NHC-stabilised dialumenes.  相似文献   
5.
The Cp(2)Zr-catalyzed hydrosilylation of ethylene was theoretically investigated with DFT and MP2-MP4(SDQ) methods, to clarify the reaction mechanism and the characteristic features of this reaction. Although ethylene insertion into the Zr-SiH(3) bond of Cp(2)Zr(H)(SiH(3)) needs a very large activation barrier of 41.0 (42.3) kcal/mol, ethylene is easily inserted into the Zr-H bond with a very small activation barrier of 2.1 (2.8) kcal/mol, where the activation barrier and the energy of reaction calculated with the DFT(B3LYP) method are given and in parentheses are those values which have been corrected for the zero-point energy, hereafter. Not only this ethylene insertion reaction but also the coupling reaction between Cp(2)Zr(C(2)H(4)) and SiH(4) easily takes place to afford Cp(2)Zr(H)(CH(2)CH(2)SiH(3)) and Cp(2)Zr(CH(2)CH(3))(SiH(3)) with activation barriers of 0.3 (0.7) and 5.0 (5.4) kcal/mol, respectively. This coupling reaction involves a new type of Si-H sigma-bond activation which is similar to metathesis. The important interaction in the coupling reaction is the bonding overlap between the d(pi)-pi bonding orbital of Cp(2)Zr(C(2)H(4)) and the Si-H sigma orbital. The final step is neither direct C-H nor Si-C reductive elimination, because both reductive eliminations occur with a very large activation barrier and significantly large endothermicity. This is because the d orbital of Cp(2)Zr is at a high energy. On the other hand, ethylene-assisted C-H reductive elimination easily occurs with a small activation barrier, 5.0 (7.5) kcal/mol, and considerably large exothermicity, -10.6 (-7.1) kcal/mol. Also, ethylene-assisted Si-C reductive elimination and metatheses of Cp(2)Zr(H)(CH(2)CH(2)SiH(3)) and Cp(2)Zr(CH(2)CH(3))(SiH(3)) with SiH(4) take place with moderate activation barriers, 26.5 (30.7), 18.4 (20.5), and 28.3 (31.5) kcal/mol, respectively. From these results, it is clearly concluded that the most favorable catalytic cycle of the Cp(2)Zr-catalyzed hydrosilylation of ethylene consists of the coupling reaction of Cp(2)Zr(C(2)H(4)) with SiH(4) followed by the ethylene-assisted C-H reductive elimination.  相似文献   
6.
Two integral operatorsP andQ for analytic functions in the open unit disk are introduced. The object of the present paper is to derive some properties of integral operatorsP andQ .  相似文献   
7.
Adsorptions of N(2), H(2)O, and organic vapors including CH(2)Cl(2), CCl(4), c-C(6)H(12), C(6)H(6), n-C(6)H(14), and n-C(9)H(20) on a silica-pillared layered manganese oxide (SiHMnO) and nonane-preadsorbed SiHMnO were examined. It is found that SiHMnO has a microporosity with a wide pore width distribution showing different pore wall affinities. Micropores with smaller width preferentially accommodate the nonane preadsorbate while the surface hydrophilicity of pore wall leads to an easier detachment of the adsorbed nonane molecules. H(2)O adsorption influences both the porosity and the surface properties by accelerating a sufficient hydrolysis of the remained TEOS molecules in SiHMnO. Examinations using Dubinin-Radeshkevich (DR) equation and isosteric heat of adsorption of organic molecules provide evidences that the wall surface of micropores with smaller and larger width have less affinity toward nonpolar and polar organic vapors, respectively.  相似文献   
8.
Reactions of 2-alkynyl arylethynyl selenide 1 with alkyl iodides 3 in the presence of lithium aluminium hydride via allenyl selenoketene 2 afforded cyclobutene 4. Allenyl group of the intermediate allenyl selenoketene 2 was monitored by React IR.  相似文献   
9.
A new ring-opening reaction of 1,3,4-oxadiazole by methylating reagents was developed in fuming sulfuric acid or polyphosphoric acid and then, by applying this reaction to poly-p-phenylene-1,3,4-oxadiazole, a high molecular weight poly-N-methylterephthalylhydrazide was obtained. Various methylating reagents were investigated as ring-opening reagents. The degrees of ring-opening in polymers were estimated and related to the properties of the polymers.  相似文献   
10.
The interaction of water with hydrophobic surfaces is quite important in a variety of chemical and biochemical phenomena. The coexistence of water and oil can be realized by introduction of surfactants. In the case of water vapor adsorption on graphitic nanopores, plenty of water can be adsorbed in graphitic nanopores without surfactants, although the graphitic surface is not hydrophilic. Why are water molecules adsorbed in hydrophobic nanopores remarkably? This work can give an explicit insight to water adsorption in hydrophobic graphite nanopores using experimental and theoretical approaches. Water molecules are associated with each other to form the cluster of 1 nm in size, leading to a significant stabilization of the cluster in the graphitic nanopores. This mechanism can be widely applied to interfacial phenomena relating to coexistence of water and nanostructural materials of hydrophobicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号