首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   8篇
化学   30篇
  2022年   1篇
  2020年   3篇
  2019年   8篇
  2018年   10篇
  2017年   4篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有30条查询结果,搜索用时 281 毫秒
1.
2.
Hollow magnetic nanoparticles (MNPs) with tetrahedral morphology were synthesized and then covered by a shell prepared by coating with melamine–formaldehyde followed by the introduction of glucose‐derived carbon. Subsequently, Pd nanoparticles were immobilized and the core–shell nanocomposite was carbonized. The obtained magnetic catalyst was successfully applied for the hydrogenation of nitroarenes in aqueous media. To investigate the effects of the morphology of MNPs, the nature of carbon shell, and the order of incorporation of Pd nanoparticles, several control catalysts, including the MNPs with different morphologies (disc‐like and cylinder); MNPs coated with different shells (sole glucose‐derived carbon or melamine–formaldehyde carbon shell); and a nanocomposite, in which Pd was immobilized after carbonization, were prepared and examined as catalyst for the model reaction. To justify the observed different catalytic activities of the catalysts, their Pd loadings, leaching, and specific surface areas were compared. The results confirmed that tetrahedral MNPs coated with porous N‐rich carbon shell exhibited the best catalytic activity. The high catalytic activity of this catalyst was attributed to its high surface area and the interaction of N‐rich shell with Pd nanoparticles that led to the higher Pd loading and suppressed Pd leaching.  相似文献   
3.
Silica-supported Preyssler nanoparticles appear to be a new and efficient solid acid catalyst for an economical, and environmentally benign one-pot synthesis of 3-substituted phthalides.  相似文献   
4.
A novel biochar-based graphitic carbon nitride was prepared through calcination of Zinnia grandiflora petals and urea. To provide acidic and ionic-liquid functionalities on the prepared carbon, the resultant biochar-based graphitic carbon nitride was vinyl functionalized and polymerized with 2-acrylamido-2-methyl-1-propanesulfonic acid, acrylic acid and the as-prepared 1-vinyl-3-butylimidazolium chloride. The final catalytic system that benefits from both acidic (–COOH and –SO3H) and ionic-liquid functionalities was applied as a versatile, metal-free catalyst for promoting some model acid catalyzed reactions such as Knoevenagel condensation and Biginelli reaction in aqueous media under a very mild reaction condition. The results confirmed high activity of the catalyst. Broad substrate scope and recyclability and stability of the catalyst were other merits of the developed protocols. Comparative experiments also indicated that both acidic and ionic-liquid functionalities on the catalyst participated in the catalysis.  相似文献   
5.
6.
A novel hybrid system composed of sepiolite clay and cyclodextrin nanosponge (CDNS) was prepared via reaction of Cl‐functionalized sepiolite with amine‐functionalized CDNS. CDNS–sepiolite was then applied for immobilization of Pd(0) nanoparticles. The resulting hybrid system, Pd@CDNS‐sepiolite, was characterized using various techniques and successfully used as an efficient and heterogeneous catalyst for ligand‐ and copper‐free Sonogashira and Heck coupling reactions under mild reaction conditions. Recycling experiments confirmed that Pd@CDNS‐sepiolite was recyclable and could be used for several consecutive reaction runs with slight Pd leaching and loss of catalytic activity.  相似文献   
7.
Halloysite nanoclay, Hal, was amine-functionalized and subsequently reacted with 2,4,6-trichloro-1,3,5-triazine, TCT, and ethylenediamine, EDA, to provide multinitrogen containing functionality on the surface of Hal. The resulting surface-modified Hal, Hal-2N-TCT-EDA, was then used for immobilization of Pd nanoparticles and affording a heterogeneous catalyst, Pd@Hal-2N-TCT-EDA, with utility for copper and ligand-free Sonogashira coupling of alkynes and aryl halides. The results established the efficiency of this protocol in terms of product yield, ecofriendly nature, and reaction time. Study of the reusability of the catalyst confirmed that the catalyst could be recovered and recycled up to seven times with slight loss of catalytic activity and Pd leaching, indicating the efficiency of Hal-2N-TCT-EDA for embedding Pd nanoparticles. To elucidate the role of the number of surface nitrogens on the catalytic performance, the catalytic activity, and recyclability of the catalyst was compared with those of Hal-2N and Hal-2N-TCT. It was found that more surface nitrogen atoms gave higher loading of Pd and lower Pd leaching. This result confirms the contribution of surface nitrogens to anchor the Pd species and suppress leaching.

  相似文献   

8.
Research on Chemical Intermediates - SBA/hydrotalcite/heteropolyacid nanocomposite is synthesized via a novel procedure in which the as-prepared heteropolyacid-loaded SBA-15 was impregnated with...  相似文献   
9.
A novel catalytic nanocomposite, MNPs/Hal-POSS-HEMA-Pd, composed of halloysite nanoclay and polyhedral oligomeric silsesquioxane is reported. To synthesize the catalyst, magnetic halloysite was vinyl functionalized and then polymerized with 2-hydroxyethyl methacrylate and methacrylate polyhedral oligomeric silsesquioxane. Afterwards, the latter was palladated to furnish a heterogeneous catalyst with use for catalyzing the reductive degradation of organic dyes, Rhodamine B, and methyl orange with NaBH4. The kinetic and thermodynamic parameters of both reactions were estimated. The results asserted that low content of the catalyst could catalyze the dye reduction reactions to furnish hydrogenated product in quantitative conversion in a very short reaction times (1 min). It is assumed that both halloysite and polyhedral oligomeric silsesquioxane can contribute to the anchoring of Pd nanoparticles. On the other hand, the polymeric network around halloysite can furnish a microenvironment for bringing dyes in the vicinity of active sites. Moreover, unique tubular morphology of halloysite can effectively improve dye adsorption and consequently enhance dye reduction. Additionally, the study of the recyclability of the catalyst approved that it could be magnetically recovered and reused for ten successive reaction runs with trivial leach of Pd (2 wt.%) and decrement of the catalytic activity.  相似文献   
10.
A novel heterogeneous catalyst is prepared through functionalization of halloysite nanotube with 1H‐1,2,3‐triazole‐5‐methanol and subsequent immobilization of silver nanoparticles through bio‐assisted approach using Arctiumplatylepis extract. The resulting catalyst, Ag@HNTs‐T, was characterized by using SEM/EDX, BET, XRD, FTIR, ICP‐AES, TGA, DTGA and elemental mapping analysis. Moreover, we computationally assessed metal‐ligand interactions in Ag@HNTs‐T complex model to interpret the immobilization behavior of silver nanoparticles on HNTs surface via quantum chemistry computations. The catalytic activity of the catalyst was studied for the synthesis of propargylamines via A3 and KA2 coupling reactions under ultrasonic irradiation. The results demonstrated that Ag@HNTs‐T could efficiently promote these reactions to furnish the corresponding products in high yields and short reaction times. The study of the recyclability of the catalyst and Ag(0) leaching confirmed that the catalyst was recyclability up to four reaction runs with slight Ag(0) leaching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号