首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   6篇
化学   133篇
力学   4篇
数学   17篇
物理学   18篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   12篇
  2012年   16篇
  2011年   16篇
  2010年   6篇
  2009年   7篇
  2008年   10篇
  2007年   11篇
  2006年   17篇
  2005年   10篇
  2004年   11篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1977年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
1.
Atom transfer radical polymerization (ATRP) has been utilized to synthesize tri‐ and star‐block copolymers of poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) and quaternized poly(2‐(dimethylamino)ethyl methacrylate) (qPDMAEMA). The block copolymers, all with a minimum of two cationically charged blocks, were sequentially used for electrostatic macrocrosslinking of a dilute dispersion of anionic TEMPO‐oxidized cellulose nanofibrils (CNF, 0.3 wt%), forming free‐standing hydrogels. The cationic block copolymers adsorbed irreversibly to the CNF, enabling the formation of ionically crosslinked hydrogels, with a storage modulus of up to 2.9 kPa. The ability of the block copolymers to adsorb to CNF was confirmed by quartz crystal microbalance with dissipation monitoring (QCM‐D) and infrared spectroscopy (FT‐IR), and the thermoresponsive properties of the hydrogels were investigated by rheological stress and frequency sweep, and gravimetric measurements. This method was shown to be promising for the facile production of thermoresponsive hydrogels based on CNF. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3415–3424  相似文献   
2.
Research in functionalized inorganic supports faces special challenges regarding the inmobilization of organic chains and efficient computational methods for the quantum chemical modeling of coordination compounds. The silylant 3-cloropropyltriethoxysilyl (R1) was anchored over silica gel in anhydrous conditions, in order to react with diethyl Iminodiacetate (DIDA) to obtain modified silica gel (R2), which was hydrolized in basic conditions previously synthesized and characterized by S BET, TGA and FTIR spectroscopy to obtain iminodiacetic acid groups IDA to prepare an modified inorganic support (R3) that is able to get hands on metals from the first transition series such as copper and nickel. The obtained experimental values showed that the functionalized grade of R3 corresponds to 0.1598 mmol of the nitrogen indicated that the adsorbed Cu(II) or Ni(II) have the stoichiometry for both cation of 1:1. Based on this relation, the three different structures were proposed to carry out the computational studies using density functional theory (DFT) in its LDA and PW91 with the TZP slater type basis set. The primary coordination sphere of copper(II) or nickel (II) ion in R3 are optimized, structural parameters are calculated, vibrational bands are assigned and energy gaps of frontier orbital (HOMO–LUMO) have been calculated. The calculated results reproduced the experimental data with good agreement. An energy decomposition analysis (EDA) of the different models proposed here was performed and suggest a 1:1 coordination form.  相似文献   
3.
4.
The combination of 2D materials opens a wide range of possibilities to create new-generation structures with multiple applications. Covalently cross-linked approaches are a ground-breaking strategy for the formation of homo or heterostructures made by design. However, the covalent assembly of transition metal dichalcogenides flakes is relatively underexplored. Here, a simple covalent cross-linking method to build 2H-MoS2–MoS2 homostructures is described, using commercially available bismaleimides. These assemblies are mainly connected vertically, basal plane to basal plane, creating specific molecular sized spaces between MoS2 sheets. Therefore, this straightforward approach gives access to the controlled connection of sulfide-based 2D materials.  相似文献   
5.
It has been found that unsolvated bis (diorganoamino) magnesium compounds react smoothly with carboxylic acids to give the corresponding carboxamides directly in good to excellent yields.  相似文献   
6.
7.
In this article, we present a higher‐order finite volume method with a ‘Modified Implicit Pressure Explicit Saturation’ (MIMPES) formulation to model the 2D incompressible and immiscible two‐phase flow of oil and water in heterogeneous and anisotropic porous media. We used a median‐dual vertex‐centered finite volume method with an edge‐based data structure to discretize both, the elliptic pressure and the hyperbolic saturation equations. In the classical IMPES approach, first, the pressure equation is solved implicitly from an initial saturation distribution; then, the velocity field is computed explicitly from the pressure field, and finally, the saturation equation is solved explicitly. This saturation field is then used to re‐compute the pressure field, and the process follows until the end of the simulation is reached. Because of the explicit solution of the saturation equation, severe time restrictions are imposed on the simulation. In order to circumvent this problem, an edge‐based implementation of the MIMPES method of Hurtado and co‐workers was developed. In the MIMPES approach, the pressure equation is solved, and the velocity field is computed less frequently than the saturation field, using the fact that, usually, the velocity field varies slowly throughout the simulation. The solution of the pressure equation is performed using a modification of Crumpton's two‐step approach, which was designed to handle material discontinuity properly. The saturation equation is solved explicitly using an edge‐based implementation of a modified second‐order monotonic upstream scheme for conservation laws type method. Some examples are presented in order to validate the proposed formulation. Our results match quite well with others found in literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
8.
9.
Two different initiator/transfer agents (inifers) containing an alkoxyamine and a dithiobenzoate were synthetized and used to trigger out either reversible addition‐fragmentation chain transfer (RAFT) polymerization or nitroxide‐mediated polymerization (NMP). α‐Dithiobenzoate‐ω‐alkoxyamine‐difunctional polymers were produced in both cases which were subsequently used as precursors in the formation of block copolymers. This synthetic approach was applied to N‐isopropylacrylamide (NIPAM) or polyethylene oxide methacrylate (EOMA) to form α,ω‐heterodifunctional homopolymers via RAFT at 60°C which were chain extended with styrene by activating the alkoxyamine moiety at 120°C. Under such temperature conditions, it is proposed that a tandem NMP/RAFT polymerization is initiated producing a simultaneous growth of polystyrene blocks at both chain‐ends. Self‐assembled nanostructures of these amphiphilic block copolymers were evidenced by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号