首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
化学   20篇
力学   1篇
数学   1篇
物理学   21篇
  2023年   1篇
  2019年   2篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  1999年   5篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
排序方式: 共有43条查询结果,搜索用时 234 毫秒
1.
It is well known that water plays a fundamental role for living beings, because the nature of water transformations provides for the ability to preserve biostructures. Solute can be classified as “kosmotropes” or “chaotropes” depending on the interaction strength with water. In the case of solutes destroying the natural hydrogen bonded network of water, called “kosmotropes” or “structure-makers”, the denaturation processes can be inhibited.

The aim of this work is to investigate the vibrational behaviour of maltose/H2O mixtures in order to characterise the changes induced by the sugar on the H2O hydrogen-bonded network. The obtained findings point out that maltose has a destructuring effect on the water tetrahedral network and emphasise its kosmotrope character.  相似文献   

2.
In this study we utilize neutron Compton scattering (NCS) to determine differences in nuclear momentum distributions in NaH, both as bulk material and encapsulated as nanoscale particles (from 20 to 50 nm in diameter) within an amorphous silica-gel matrix (SiGNaH). In addition, elemental Na dispersed in such a matrix is also studied (SiGNa). Data treatment and fitting of experimental spectra yields comparison of the nuclear Compton profiles and radial momentum distributions for the proton in both bulk NaH and nanoscale SiGNaH, with resultant proton kinetic energies being in agreement with previous inelastic neutron studies of bulk NaH. Slight differences in proton radial momentum distributions for bulk and nanoscale systems are witnessed and discussed. The technique of stoichiometric-fixing is applied to the backscattering spectra of each system in order to examine changes in the Na profile width, and NCS is shown to be sensitive to the chemical environment change of this heavier nucleus. Examination of the Si and O profile widths in the gel samples also supports this method.  相似文献   
3.
Fast atom bombardment, combined with high-energy collision-induced tandem mass spectrometry, has been used to investigate gas-phase metal-ion interactions with captopril, enalaprilat and lisinopril, all angiotensin-converting enzyme inhibitors.Suggestions for the location of metal-binding sites are presented. For captopril, metal binding occurs most likely at both the sulphur and the nitrogen atom. For enalaprilat and lisinopril, binding preferably occurs at the amine nitrogen. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
4.
We have previously used inelastic incoherent neutron scattering spectroscopy to investigate the properties of aqueous suspensions of biomolecules as a function of hydration. These experiments led to the identification of signals corresponding to interfacial (hydration) water at low water content. A prediction from these studies was that in the crowded environment inside living cells, a significant proportion of the water would be interfacial, with profound implications for biological function. Here we describe the first inelastic incoherent neutron scattering spectroscopy studies of living cells and tissues. We find that the interfacial water signal is similar to that observed for water interacting with purified biomolecules and other solutes, i.e., it is strongly perturbed in the librational and translational intermolecular optical regions of the spectrum at 20-150 meV. The ratio of interfacial water compared to total water in cells (approximately 30%) is in line with previous experimental data for hydration water and calculations based on simple assumptions.  相似文献   
5.
6.
7.
8.
9.
Large separations between ground and excited magnetic states in single-molecule magnets (SMMs) are desirable to reduce the likelihood of spin reversal in the molecules. Spin-phonon coupling is a process leading to magnetic relaxation. Both the reversal and coupling, making SMMs lose magnetic moments, are undesirable. However, direct determination of large magnetic states separations (>45 cm−1) is challenging, and few detailed investigations of the spin-phonon coupling have been conducted. The magnetic separation in [Co(12-crown-4)2](I3)2(12-crown-4) ( 1 ) is determined and its spin-phonon coupling is probed by inelastic neutron scattering (INS) and far-IR spectroscopy. INS, using oriented single crystals, shows a magnetic transition at 49.4(1.0) cm−1. Far-IR reveals that the magnetic transition and nearby phonons are coupled, a rarely observed phenomenon, with spin-phonon coupling constants of 1.7–2.5 cm−1. The current work spectroscopically determines the ground–excited magnetic states separation in an SMM and quantifies its spin-phonon coupling, shedding light on the process causing magnetic relaxation.  相似文献   
10.
We report the modulation of reactivity of nitrogen dioxide (NO2) in a charged metal–organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl to give nitrosyl chloride (NOCl) and NO3 anions. A high dynamic uptake of 6.58 mmol g−1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g−1. The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV/Vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号