首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   3篇
物理学   10篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1977年   2篇
  1974年   2篇
排序方式: 共有13条查询结果,搜索用时 14 毫秒
1.
Detailed Fe vibrational spectra have been obtained for the heme model complex [Fe(TPP)(CO)(1-MeIm)] using a new, highly selective and quantitative technique, Nuclear Resonance Vibrational Spectroscopy (NRVS). This spectroscopy measures the complete vibrational density of states for iron atoms, from which normal modes can be calculated via refinement of the force constants. These data and mode assignments can reveal previously undetected vibrations and are useful for validating predictions based on optical spectroscopies and density functional theory, for example. Vibrational modes of the iron porphyrin-imidazole compound [Fe(TPP)(CO)(1-MeIm)] have been determined by refining normal mode calculations to NRVS data obtained at an X-ray synchrotron source. Iron dynamics of this compound, which serves as a useful model for the active site in the six-coordinate heme protein, carbonmonoxy-myoglobin, are discussed in relation to recently determined dynamics of a five-coordinate deoxy-myoglobin model, [Fe(TPP)(2-MeHIm)]. For the first time in a six-coordinate heme system, the iron-imidazole stretch mode has been observed, at 226 cm(-)(1). The heme in-plane modes with large contributions from the nu(42), nu(49), nu(50), and nu(53) modes of the core porphyrin are identified. In general, the iron modes can be attributed to coupling with the porphyrin core, the CO ligand, the imidazole ring, and/or the phenyl rings. Other significant findings are the observation that the porphyrin ring peripheral substituents are strongly coupled to the iron doming mode and that the Fe-C-O tilting and bending modes are related by a negative interaction force constant.  相似文献   
2.
Classical green's function methods can be used to calculate the spectra of large molecules by essentially putting together the spectra of smaller parts. The methods are useful where the parts are connected by few valence bonds.  相似文献   
3.
C Seuring  EW Scheidt  E Bauer 《Pramana》2002,58(5-6):731-736
YbCu5−x Al x provides the possibility to tune ground state properties by a change of the valence due to the Cu/Al substitution, by pressure as well as by the application of a magnetic field. Near to the critical concentration x cr≈1.5 non-Fermi-liquid properties (NFL) are obvious, obeying hyperscaling. If magnetic order sets in for x>1.5, the application of moderate magnetic fields quenches order and again NFL features become evident. Hyperscaling in this case indicates strongly interacting spin fluctuations.  相似文献   
4.
A theoretical calculation of the normal mode spectrum of double helical RNA shows large breathing and rocking modes at low frequencies.  相似文献   
5.
The normal-mode spectrum for the four-coordinated heme compound Fe(II) octaethylporphyrin, Fe(OEP), has been determined by refining force constants to the experimental Fe vibrational density of states measured with nuclear resonance vibrational spectroscopy (NRVS). Convergence of the calculated spectrum to the data was achieved by first imposing D4 symmetry on the model structure as well as the force constants, progressively including different internal coordinates of motion, then allowing the true Ci (or S2) point group symmetry of the C(i)1 Fe(OEP) crystal structure. The NRVS-refined normal modes are in good agreement with Raman and IR spectra at high frequencies. Prior density functional theory predictions for a model porphyrin are similar to the core modes computed with the best-fit force field, but significant differences between D4 and Ci modes underline the sensitivity of porphyrin Fe normal modes to structural details. Some differences between the Ci best fit and the NRVS data can be attributed to intermolecular contacts not included in the normal-mode analysis.  相似文献   
6.
7.
The measured Fe vibrational density of states in deoxy-myoglobin, obtained from nuclear resonance vibrational spectroscopy, is compared to results from a normal-mode analysis using an all-atom empirical potential. Substantial disagreement reveals that for this one atom, the empirical potential does not accurately describe the actual forces. A Green function technique is developed to calculate the iron vibrational spectrum of deoxy-myoglobin by coupling the independently calculated heme and globin normal modes; nonbonded interactions between the heme molecule and the protein are essential for a good fit to the measurements. A projection of the eigenvectors from this potential onto the displacements induced by binding of CO demonstrates that normal modes over a broad range centered around 50-150 cm(-1) may drive the ligand-induced structural changes.  相似文献   
8.
We outline a new refinement procedure based on a Green function approach. We display the basic equation to be used and discuss some of the advantages of the procedure.  相似文献   
9.
We suggest that soft mode transitions may be induced by irradiating materials with infrared or lower frequency electromagnetic radiation. We suggest that such a mechanism may be operating in inducing biologically significant effects upon microwave irradiation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号