首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   6篇
  国内免费   5篇
化学   184篇
晶体学   1篇
力学   7篇
数学   44篇
物理学   75篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   4篇
  2014年   9篇
  2013年   17篇
  2012年   12篇
  2011年   19篇
  2010年   13篇
  2009年   10篇
  2008年   18篇
  2007年   26篇
  2006年   17篇
  2005年   17篇
  2004年   12篇
  2003年   9篇
  2002年   13篇
  2001年   13篇
  2000年   12篇
  1999年   6篇
  1998年   1篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   4篇
  1977年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
1.
All electronic devices are plagued with 1/f noise originating from many causes. The most important factors contributing to 1/f noise in a semiconductor is believed to be recombination of carriers and their trapping at defects and impurity sites. Adsorption of moisture and electron acceptor molecules enhances the intensity of 1/f noise. Amazingly, some molecular species that strongly chelate to the semiconductor surface, suppress 1/f noise owing to passivation of the recombination sites. Thus in addition to sensitization, the dye adsorbed on the nanocrystallites plays a key role in mitigation of recombinations. For this reason dye-sensitized heterojunctions could also find application as low noise NIR photon detectors. Experiments conducted with oxide semiconductors (TiO2, ZnO, SnO2) indicate that the mode of binding of dyes at specific sites determines the extent to which the recombination and 1/f noise are suppressed. The transport of electrons in a nanocrystalline matrix is diffusive with a diffusion coefficient D depending on the trapping and detrapping processes. Thus passivation of trapping sites by the adsorbed dye is expected to increase the response time which can be expressed as τ  L2/D, where L = thickness of the nanocrystalline film. Measurement techniques and construction of a dye-sensitized NIR photon detector will be discussed.  相似文献   
2.
3.
4.
We describe here molecular dynamics computer simulations performed to study the solvation of ions (Cl? and Na+) in water clusters. Our simulations show that the calculated structure and dynamics of the clusters is very sensitive to the potential model which is used to describe the interactions. From the comparison with thermodynamic data and data from the photoelectron spectra we conclude that in Cl?(H2O)n (n≤20) clusters the ion is located on the surface of the cluster.  相似文献   
5.
A model to calculate the interfacial concentration of competing surface active species in a two-phase oil/water system was developed. To enable the calculation of the surface excess of 2-hydroxy-5-nonylacetophenone oxime (HNAPO, active ingredient of LIX 84) in the presence of surfactants competing for interfacial area, an interfacial adsorption competition model was derived for noninteracting surface active species in a n-heptane/aqueous system, assuming ideal enthalpy and entropy of mixing. The model was found to be valid for HNAPO in the presence of sodium dodecyl sulfate (SDS) or dodecyldimethyl(3-sulfopropyl)ammonium (DDSA). In the case of dodecyltrimethylammonium chloride (DTAC) or octa(ethylene glycol) mono-n-dodecyl ether (C12E8) as the competing surfactants with HNAPO, the predicted surface excess values from the model fit less favorably. The difference was shown to not be due to nonideal entropy of mixing.  相似文献   
6.
7.
Diabetes mellitus is a chronic disease and one of the fastest-growing health challenges of the last decades. Studies have shown that chronic low-grade inflammation and activation of the innate immune system are intimately involved in type 2 diabetes pathogenesis. Momordica charantia L. fruits are used in traditional medicine to manage diabetes. Herein, we report the purification of a new 23-O-β-d-allopyranosyl-5β,19-epoxycucurbitane-6,24-diene triterpene (charantoside XV, 6) along with 25ξ-isopropenylchole-5(6)-ene-3-O-β-d-glucopyranoside (1), karaviloside VI (2), karaviloside VIII (3), momordicoside L (4), momordicoside A (5) and kuguaglycoside C (7) from an Indian cultivar of Momordica charantia. At 50 µM compounds, 2–6 differentially affected the expression of pro-inflammatory markers IL-6, TNF-α, and iNOS, and mitochondrial marker COX-2. Compounds tested for the inhibition of α-amylase and α-glucosidase enzymes at 0.87 mM and 1.33 mM, respectively. Compounds showed similar α-amylase inhibitory activity than acarbose (0.13 mM) of control (68.0–76.6%). Karaviloside VIII (56.5%) was the most active compound in the α-glucosidase assay, followed by karaviloside VI (40.3%), while momordicoside L (23.7%), A (33.5%), and charantoside XV (23.9%) were the least active compounds. To better understand the mode of binding of cucurbitane-triterpenes to these enzymes, in silico docking of the isolated compounds was evaluated with α-amylase and α-glucosidase.  相似文献   
8.
Morphological and thermodynamic transitions in drugs as well as their amorphous and crystalline content in the solid state have been distinguished by thermal analytical techniques, which include dielectric analysis (DEA), differential scanning calorimetry (DSC), and macro-photomicrography. These techniques were used successfully to establish a structure versus property relationship with the United States Pharmacopeia standard set of active pharmaceutical ingredient (API) drugs. A distinguishing method is the DSC determination of the amorphous and crystalline content which is based on the fusion properties of the specific drug and its recrystallization. The DSC technique to determine the crystalline and amorphous content is based on a series of heat and cool cycles to evaluate the drugs ability to recrystallize. To enhance the amorphous portion, the API is heated above its melting temperature and cooled with liquid nitrogen to ?120 °C (153 K). Alternatively a sample is program heated and cooled by DSC at a rate of 10 °C min?1. DEA measures the crystalline solid and amorphous liquid API electrical ionic conductivity. The DEA ionic conductivity is repeatable and differentiates the solid crystalline drug with a low conductivity level (10?2 pS cm?1) and a high conductivity level associated with the amorphous liquid (10pS cm?1). The DSC sets the analytical transition temperature range from melting to recrystallization. However, analysis of the DEA ionic conductivity cycle establishes the quantitative amorphous and crystalline content in the solid state at frequencies of 0.10–1.00 Hz and to greater than 30 °C below the melting transition as the peak melting temperature. This describes the “activation energy method.” An Arrhenius plot, log ionic conductivity versus reciprocal temperature (K?1), of the pre-melt DEA transition yields frequency dependent activation energy (E a, J mol?1) for the complex charging in the solid state. The amorphous content is inversely proportional to the E a where the E a for the crystalline form is higher and lower for the amorphous form with a standard deviation of ±2%. There was a good agreement between the DSC crystalline melting, recrystallization, and the solid state DEA conductivity method with relevant microscopic evaluation. An alternate technique to determine amorphous and crystalline content has been established for the drugs of interest based on an obvious amorphous and crystalline state identified by macro-photomicrography and compared to the conductivity variations. This second “empirical method” correlates well with the “activation energy” method.  相似文献   
9.
We study a central bank intervention (CBI) problem in the foreign exchange market when the exchange rate follows a jump-diffusion process and show that the optimal CBI policy is a control-band policy. Our main contribution is a rigorous proof of the existence and uniqueness of the optimal CBI policy.  相似文献   
10.
The industrial process of coating flat surfaces with polymeric substances is numerically simulated by solving the full equations of motion for a flow through a contraction with a moving boundary. The four-constant Oldroyd constitutive equation is used to represent the viscoelastic fluid. Some adjustments to existing finite-difference methods are made in such a way as to avoid singular iterative matrices during the solution process. Results are presented for flow situations with Weissenberg numbers up to about three times larger than any previously published results for this problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号