首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
Most of the active pharmaceutical ingredients like Metoprolol are oxidatively metabolized by liver enzymes, such as Cytochrome P450 monooxygenases into oxygenates and therefore hydrophilic products. It is of utmost importance to identify the metabolites and to gain knowledge on their toxic impacts. By using electrochemistry, it is possible to mimic enzymatic transformations and to identify metabolic hot spots. By introducing charged-tags into the intermediate, it is possible to detect and isolate metabolic products. The identification and synthesis of initially oxidized metabolites are important to understand possible toxic activities. The gained knowledge about the metabolism will simplify interpretation and predictions of metabolitic pathways. The oxidized products were analyzed with high performance liquid chromatography-mass spectrometry using electrospray ionization (HPLC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. For proof-of-principle, we present a synthesis of one pyridinated main oxidation product of Metoprolol.  相似文献   
3.

Identification and quantification of microplastics (MP) in environmental samples is crucial for understanding the risk and distribution of MP in the environment. Currently, quantification of MP particles in environmental samples and the comparability of different matrices is a major research topic. Research also focusses on sample preparation, since environmental samples must be free of inorganic and organic matrix components for the MP analysis. Therefore, we would like to propose a new method that allows the comparison of the results of MP analysis from different environmental matrices and gives a MP concentration in mass of MP particles per gram of environmental sample. This is possible by developing and validating an optimized and consistent sample preparation scheme for quantitative analysis of MP particles in environmental model samples in conjunction with quantitative 1H-NMR spectroscopy (qNMR). We evaluated for the first time the effects of different environmental matrices on identification and quantification of polyethylene terephthalate (PET) fibers using the qNMR method. Furthermore, high recovery rates were obtained from spiked environmental model samples (without matrix ~ 90%, sediment ~ 97%, freshwater ~ 94%, aquatic biofilm ~ 95%, and invertebrate matrix ~ 72%), demonstrating the high analytical potential of the method.

Graphical abstract

  相似文献   
4.
In continuation of our work on the proof-of-concept that quantitative NMR spectroscopy may be a valuable tool in microplastic (MP) analysis and quantification, we present here investigations using low-field NMR spectrometers and nondeuterated solvents for the analysis of solutions of MP particles in suitable solvents. The use of low-field NMR spectrometers (benchtop NMR) that are considerably more cost-effective in terms of purchase and operating costs compared with high-field NMR spectrometers and the use of nondeuterated solvents (NoD method) leads to an applicable and cost-efficient method for mass-based MP analysis. For benchtop 80-MHz NMR, limits of detection for polyvinylchloride (PVC), polyethylene terephthalate (PET), and polystyrene (PS) are in the same range as if a high-field 500-MHz NMR spectrometer was used for quantification (500 MHz: PET 1 μg/ml, PVC 42 μg/ml, and PS 9 μg/ml; 80 MHz: PET 4 μg/ml, PVC 19 μg/ml, and PS 21 μg/ml) for polymers being dissolved in deuterated solvents. The same is true for the corresponding limits of quantification. Moreover, it is shown for the first time that quantitative determination of the mass concentration of PET, PVC, and PS is also possible using NoD methods by evaluating the integrals of polymer-specific signals relative to an internal or external standard. Detection limits for NoD methods are in a similar range as if deuterated solvents were used (PET 2 μg/ml, PVC 39 μg/ml, and PS 8 μg/ml) using a high-field 500-MHz spectrometer or the 80-MHz spectrometer (PET 5 μg/ml).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号