首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
化学   2篇
力学   5篇
数学   3篇
物理学   5篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2003年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Diiminopyrrolide copper alkoxide complexes, LCuOR (OR1=N,N‐dimethylamino ethoxide, OR2=2‐pyridyl methoxide), are active for the polymerization of rac‐lactide at ambient temperature in benzene to yield polymers with Mw/Mn=1.0–1.2. X‐ray diffraction studies showed bridged dinuclear complexes in the solid state for both complexes. While LCuOR1 provided only atactic polylactide, LCuOR2 produced partially isotactic polylactide (Pm=0.7). The difference in stereocontrol is attributed to a dinuclear active species for LCuOR2 in contrast to a mononuclear species for LCuOR1.  相似文献   
2.
The static behavior of an inflated cylindrical membrane is theoretically investigated under different conditions of internal pressures, upstream and downstream fluid parameters. The membrane is attached to a horizontal base along two generators and can be inflated with a compressible fluid (air), an incompressible fluid (water), or a combination of them. The base width, curved perimeter, internal pressure, upstream and downstream fluid properties are given. Large deformation of the membrane due to the internal and external pressures makes the governing equation of the problem to be non-linear. In the present study, an analytical approach for the non-linear analysis of the static interaction of the fluid and the cylindrical membrane with different load distributions and boundary conditions is developed. Both geometric and equilibrium relations of the membrane element are used to obtain the membrane profile in explicit closed form. The validity of the present analytical approach is confirmed by comparing the results with experimental and numerical results obtained from the literature. It is shown that the present formulation is an appropriate method and a new approach to predict the static non-linear interaction of the fluid and the membrane structures with a good accuracy and less numerical effort.  相似文献   
3.
In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function \(f (n) = \sqrt {n}\), the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.  相似文献   
4.
5.
In the present paper a method is proposed to investigate the effects of a rigid internal body on the coupled vibration of a partially fluid-filled cylindrical container. The internal body is a thin-walled and open-ended cylindrical shell. The internal body is concentrically and partially submerged inside a container. The radial and axial distances between the internal body and the container are filled with fluid. Along the contact surface between the container and the fluid, the compatibility requirement for the fluid–structure interactions is applied and the Rayleigh–Ritz method is used to calculate the natural frequencies and modes of a partially fluid-filled cylindrical container. The fluid domain is continuous, simply connected, and non-convex. The fluid is assumed to be incompressible and inviscid. The velocity potential for fluid motion is formulated in terms of eigenfunction expansions for two distinct fluid regions. The resulting equations are solved by using the Galerkin method. The results from the proposed method are in good agreement with experimental and numerical solutions available in the literature for the partially water-filled cylindrical container without internal body. A finite element analysis is also used to check the validity of the present method for the partially water-filled cylindrical container with internal body. The effects of the fluid level, internal body radius, and internal body length on the natural frequencies of the coupled system are also investigated.  相似文献   
6.

Background  

Propolis (bee glue) has been used as a remedy since ancient times. Propolis from unexplored regions attracts the attention of scientists in the search for new bioactive molecules.  相似文献   
7.
An analytical method is developed to consider the free vibration of an elastic bottom plate of a partially fluid-filled cylindrical rigid container with an internal body. The internal body is a rigid cylindrical block that is concentrically and partially submerged inside the container. The developed method captured the analytical features of the velocity potential in a non-convex, continuous, and simply connected fluid domain including the interaction between the fluid and the structure. The interaction between the fluid and the bottom plate is included. The Galerkin method is used for matching the velocity potentials appropriate to two distinct fluid regions across the common horizontal boundary (artificial horizontal boundary). Then, the Rayleigh–Ritz method is also used to calculate the natural frequencies and modes of the bottom plate of the container. The results obtained for the problem without internal body are in close agreement with both experimental and numerical results available in the articles. A finite element analysis is also used to check the validity of the present method in the presence of the internal body. Furthermore, the influences of various variables such as fluid level, internal body radius, internal body length, and the number of nodal diameters and circles on the dynamic behaviour of the coupled system are investigated.  相似文献   
8.
In the present paper, two-dimensional coupled free vibrations of a fluid-filled rectangular container with a sagged bottom membrane are investigated. This system consists of two rigid walls and a membrane anchored along two rigid vertical walls. It is filled with incompressible and inviscid fluid. The membrane material is assumed to act like an inextensible material with no bending resistance. First, the nonlinear equilibrium equation is solved and the equilibrium shape of the membrane is obtained using an analytical formulation neglecting the membrane weight. The small vibrations about the equilibrium configuration are then investigated. Along the contact surface between the bottom membrane and the fluid, the compatibility requirement is applied for the fluid–structure interactions and the finite element method is used to calculate the natural frequencies and mode shapes of the fluid–membrane system. The vibration analysis of the coupled system is accomplished by using the displacement finite element for the membrane and the pressure fluid-finite element for the fluid domain. The variations of natural frequencies with the pressure head, the membrane length, the membrane weight and the distance between two rigid walls are examined. Moreover, the mode shapes of system are investigated.  相似文献   
9.
On Steiner trees and minimum spanning trees in hypergraphs   总被引:3,自引:0,他引:3  
The bottleneck of the state-of-the-art algorithms for geometric Steiner problems is usually the concatenation phase, where the prevailing approach treats the generated full Steiner trees as edges of a hypergraph and uses an LP-relaxation of the minimum spanning tree in hypergraph (MSTH) problem. We study this original and some new equivalent relaxations of this problem and clarify their relations to all classical relaxations of the Steiner problem. In an experimental study, an algorithm of ours which is designed for general graphs turns out to be an efficient alternative to the MSTH approach.  相似文献   
10.
A gradient-enriched shell formulation is introduced in the present study based on the first order shear deformation shell model and the stress gradient and strain-inertia gradient elasticity theories are used for dynamic analysis of single walled carbon nanotubes. It provides extensions of the first order shear deformation shell formulation with additional higher-order spatial derivatives of strains and stresses. The higher-order terms are introduced in the formulation by using the Laplacian of the corresponding lower-order terms. The proposed shell formulation includes two length scale size parameters related to the strain gradients and inertia gradients. The effects of the transverse shear, aspect ratio, circumferential and half-axial wave numbers and length scale parameters on different vibration modes of the single-walled carbon nanotubes are elucidated. The results are also compared with those obtained from a classical shell theory with Sanders–Koiter strain-displacement relationships.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号