首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   27篇
  国内免费   4篇
化学   332篇
晶体学   1篇
力学   16篇
数学   56篇
物理学   83篇
  2023年   5篇
  2022年   17篇
  2021年   60篇
  2020年   23篇
  2019年   22篇
  2018年   12篇
  2017年   11篇
  2016年   33篇
  2015年   22篇
  2014年   31篇
  2013年   41篇
  2012年   46篇
  2011年   30篇
  2010年   21篇
  2009年   15篇
  2008年   13篇
  2007年   12篇
  2006年   5篇
  2005年   9篇
  2004年   9篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1973年   1篇
  1972年   2篇
  1965年   2篇
  1964年   1篇
  1917年   2篇
  1890年   2篇
  1888年   4篇
排序方式: 共有488条查询结果,搜索用时 93 毫秒
1.
2.
3.
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material.  相似文献   
4.
In this study, an ITO (indium tin oxide) based biosensor was constructed to detect SOX2. SOX2 helps the regulation of cell pluripotency and is closely related to early embryonic development, neural and sexual differentiation. SOX2 is amplified and overexpressed in some malignant tumors such as squamous cell, lung, prostate, breast, esophageal cell, colon, ovarian, glioblastoma, pancreatic cancer, gastric cancer, head and neck squamous cell carcinoma. To generate a hydroxylated clean electrode surface, ITO electrodes were treated with NH4OH/H2O2/H2O. Later, ITO‐PET electrode surfaces were modified with 3‐glycidoxypropyl trimethoxysilane (3‐GOPS). Then, Anti‐SOX2 was covalently immobilized onto the electrode surfaces. 3‐GOPS concentration, Anti‐SOX2 concentration and incubation time, SOX2 incubation time were optimized. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were utilized in order to follow up the immobilization processes and the optimization steps of the biosensor. To characterize the analytical properties of constructed immunosensor; linear range, repeatability, reproducibility and regeneration studies were investigated. The linear range of the immunosensor was detected as 0.625 pg/mL–62.5 pg/mL. Square wave voltammetry technique was also applied to the biosensor. Storage life of the biosensor was determined for identifying the possible usability of the biosensor in clinical field. Finally, the designed biosensor was applied to the real human serum samples. The results obtained with the presented biosensor were also compared with ELISA results.  相似文献   
5.
Along with many factors, the change in protein tau isoforms, which has an obvious role in the function of microtubules, is an important biomarker of Alzheimer's disease. The aim of this study is to determine the protein Tau-441 with a portable potentiostat using a practical approach. For this purpose, screen printed electrodes (SPCEs) were first hydroxylated and then functional self-assembled monolayers were formed on the surface with 3-aminopropyltriethoxysilane (APTES). Evidence of anti-Tau being immobilized on to the surface was followed by techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR). The constructed immunosensor showed a linear response within the concentration range of 0.0064–0.8 ng/mL for the target analyte Tau-441 and the limit of detection was found to be 0.0053 ng/mL. In addition, analytical behaviors such as reproducible measurements and storage life of the developed immunosensor with a portable potentiostat were also investigated. It has been demonstrated that Tau-441 can be captured with the help of portable device with sensitivity in CSF environment.  相似文献   
6.
In this article, we introduced a novel electrochemical biosensor for the detection of microRNA-126. The biosensor utilizes a hybridization assay combined with multi-walled carbon nanotubes and gold nanorod-decorated screen-printed carbon electrodes. For electrode preparation, gold nanorods were first immobilized onto the surface of bare and multi-walled carbon nanotube-modified screen-printed carbon electrodes, and the thiol tagged-capture probe was immobilized on the electrode surface through gold and thiol group interaction. After the immobilization, thiol tagged-capture probe hybridized with the target sequence. Under optimum conditions, we determined limit of detection (LOD) and limit of quantification (LOQ) as high as 11 nM and 36 nM, respectively.  相似文献   
7.
Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccharides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medicinal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mushrooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti-cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mechanisms underlying the potent bioactivities of several representative mushrooms in the Kingdom Fungi against various types of tumour.  相似文献   
8.
Cellulose - Textile filaments were fabricated from a solution obtained from carboxymethylated cellulose dissolved in aqueous NaOH solution, by wet spinning in an acid coagulation bath. Spinning is...  相似文献   
9.
Alam  Nur  Tong  Li  He  Zhibin  Tang  Ruihua  Ahsan  Laboni  Ni  Yonghao 《Cellulose (London, England)》2021,28(13):8641-8651
Cellulose - Lateral flow assay (LFA) is an important point-of-care (POC) test platform due to the associated portability, on-site testing, and low cost for diagnosis of pathogen infections and...  相似文献   
10.
This study assesses the performance of optimized acacia wood-based activated carbon (AWAC) as an adsorbent for methylene blue (MB) dye removal in aqueous solution. AWAC was prepared via a physicochemical activation process that consists of potassium hydroxide (KOH) treatment, followed by carbon dioxide (CO2) gasification under microwave heating. By using response surface methodology (RSM), the optimum preparation conditions of radiation power, radiation time, and KOH-impregnation ratio (IR) were determined to be 360 W, 4.50 min, and 0.90 g/g respectively, which resulted in 81.20 mg/g of MB dye removal and 27.96% of AWAC’s yield. Radiation power and IR had a major effect on MB dye removal while radiation power and radiation time caused the greatest impact on AWAC’s yield. BET surface area, mesopore surface area, and pore volume of optimized AWAC were found to be 1045.56 m2/g, 689.77 m2/g, and 0.54 cm3/g, respectively. Adsorption of MB onto AWAC followed Langmuir and pseudo-second order for isotherm and kinetic studies respectively, with a Langmuir monolayer adsorption capacity of 338.29 mg/g. Mechanism studies revealed that the adsorption process was controlled by film diffusion mechanism and indicated to be thermodynamically exothermic in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号