首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   4篇
物理学   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2005年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Journal of Thermal Analysis and Calorimetry - This study aims to investigate the thermal conductivity, viscosity and thermal degradation of naphthenic-based mineral oil, palm oil methyl ester...  相似文献   
2.
Biosensors are emerging as efficient (sensitive and selective) and affordable analytical diagnostic tools for early-stage disease detection, as required for personalized health wellness management. Low-level detection of a targeted disease biomarker (pM level) has emerged extremely useful to evaluate the progression of disease under therapy. Such collected bioinformatics and its multi-aspects-oriented analytics is in demand to explore the effectiveness of a prescribed treatment, optimize therapy, and correlate biomarker level with disease pathogenesis. Owing to nanotechnology-enabled advancements in sensing unit fabrication, device integration, interfacing, packaging, and sensing performance at point-of-care (POC) has rendered diagnostics according to the requirements of disease management and patient disease profile i.e. in a personalized manner. Efforts are continuously being made to promote the state of art biosensing technology as a next-generation non-invasive disease diagnostics methodology. Keeping this in view, this progressive opinion article describes personalized health care management related analytical tools which can provide access to better health for everyone, with overreaching aim to manage healthy tomorrow timely. Considering accomplishments and predictions, such affordable intelligent diagnostics tools are urgently required to manage COVID-19 pandemic, a life-threatening respiratory infectious disease, where a rapid, selective and sensitive detection of human beta severe acute respiratory system coronavirus (SARS-COoV-2) protein is the key factor.  相似文献   
3.
We studied the reinforcing effects of treated and untreated nanohydroxyapatite (NHA) on poly-lactic acid (PLA). The NHA surface was treated with three different types of chemicals; 3-aminopropyl triethoxysilane (APTES), sodium n-dodecyl sulfate (SDS) and polyethylenimine (PEI). The nanocomposite samples were prepared using melt mixing techniques by blending 5 wt% untreated NHA and 5 wt% surface-treated NHA (mNHA). Based on the FESEM images, the interfacial adhesion between the mNHA filler and PLA matrix was improved upon surface treatment in the order of mNHA (APTES) > mNHA (SDS) > mNHA (PEI). As a result, the PLA-5wt%mNHA (APTES) nanocomposite showed increased viscoelastic properties such as storage modulus, damping parameter, and creep permanent deformation compared to pure PLA. Similarly, PLA-5wt%mNHA (APTES) thermal properties improved, attaining higher Tc and Tm than pure PLA, reflecting the enhanced nucleating effect of the mNHA (APTES) filler.  相似文献   
4.
Rapid mastitis detection assay on porous nitrocellulose membrane slides   总被引:1,自引:0,他引:1  
We have developed a rapid mastitis detection test based on the immobilization of tag-specific antibody molecules, the binding of double-tagged amplicons, and as a secondary signal a conjugate of black carbon nanoparticles having molecules of a fusion protein of neutrAvidin and alkaline phosphatase at their surface. The antibodies were inkjet printed onto three different nitrocellulose membrane slides, Unisart (Sartorius), FAST (GE Whatman), and Oncyte-Avid (Grace-Biolabs), and the final assay signals on these slides were compared. The blackness of the spots was determined by flatbed scanning and assessment of the pixel gray volume using TotalLab image analysis software. The black spots could be easily read by the naked eye. We successfully demonstrated the detection of specific amplicons from mastitis-causing pathogens in less than 3 h. Using a similar protocol, we also showed that it was possible to detect specific amplicons from four different mastitis-causing pathogens (six strains) on the same pad. The influence of two different printing buffers, phosphate-buffered saline (pH 7.4) and carbonate buffer (pH 9.6), on the functionality of the primary antibodies was also compared.  相似文献   
5.
TiO2-doped WO3 thin films were deposited onto fluorine-doped tin oxide coated conducting glass substrates using spray pyrolysis technique at 525 °C. The volume percentage of TiO2 dopant was varied from 13% to 38%. The thin film samples were transparent, uniform and strongly adherent to the substrates. Electrochromical properties of TiO2-doped WO3 thin films were studied with the help of cyclic voltammetry (CV), chronoamperometry (CA) and chronocoulometry (CC) techniques. It has been found that TiO2 doping in WO3 enhances its electrochromic performance. Colouration efficiency becomes almost double and samples exhibit increasingly high reversibility with TiO2 doping concentrations, in the studied range.  相似文献   
6.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   
7.
8.
As an alternative platinum counter electrode in dye-sensitized solar cells (DSSCs), carbon materials based counter electrode were prepared using multi-walled carbon nanotubes (MWNTs)/graphene nano-sheets (GNS) composite by simple doctor blade method. We found that the photovoltaic performance was strongly influenced by the concentration of GNS in composite electrode. The composite electrode with 60% MWNTs and 40% GNS based DSSCs showed the maximum power conversion efficiency of 4.0% while sputter deposited platinum counter electrode based DSSCs showed a power conversion efficiency of 5.0%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号