首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
化学   23篇
物理学   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2011年   4篇
  2010年   2篇
  2008年   3篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1989年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有26条查询结果,搜索用时 62 毫秒
1.
Bis(imidazolylporphyrinatozinc) molecules linked through a 1,3-butadiynylene moiety respond to the solvents they are dissolved in to afford exclusively extended (E) or stacked (S) supramolecular polymers. This system is expected to be a solvation/desolvation indicator. However, the principles underlying the solvent-dependent formation of the two types of polymers and the mechanism of the transformation between them are unclear. The formation of the polymers is considered to depend on the two types of complementary coordination bonds that can be formed and the π–π interactions between the porphyrins. In this study, the contributions and solvent dependence of both the coordination bonds and the π–π interactions have been investigated. The results clearly indicate that the coordination bonds are weakly or little solvent-dependent, and that the π–π interactions function effectively only in the inner porphyrins of the S-polymer and are strongly solvent-dependent. Thermodynamic analysis revealed that the formation of the E- or S-polymer in solution is determined by the total energies and the type of solvent used. The transformation of the E- to S-polymer was investigated by gel permeation chromatography. The kinetics of the transformation were also determined. The role of the terminal imidazolylporphyrinatozinc moieties was also investigated: The results indicate that the transformation from the E- to S-polymer occurs by an exchange mechanism between the polymers, induced by attack of terminal free imidazolyl groups on a polymer to zinc porphyrins on other polymers.  相似文献   
2.
Pulsed discharge plasma is typical oxidation technology for disposing organic compounds in aqueous solutions. When this electrical discharge plasma was applied in water, it may produce hydrogen peroxide (H2O2) without any catalyst or chemical agent. In order to increase H2O2 production by electrical discharge plasma in water, fine bubbles were introduced into the electrical discharge plasma in this experiment. Bipolar pulsed voltages were applied to cylindrical electrodes in the water while Ar or O2 bubbles were introduced, generating a pulsed discharge plasma. The introduction of the bubbles seemed to enhance the dissociation of water molecules and increased H2O2 formation, especially with O2 bubbling. Dissolved oxygen in the water contributed to H2O2 formation by pulsed discharge plasma with the bubbles, while dissociation of water molecules was the cause of H2O2 formation by pulsed discharge plasma without bubbles. More H2O2 was formed by pulsed discharge plasma with O2 bubbles, because the amount of dissolved oxygen in the water increased upon bubbling with O2.  相似文献   
3.
We have developed a novel probe with a nanometric metallized protrusion extending through a subwavelength aperture to increase optical near-field excitation and collection efficiencies. The apex diameter of the fabricated metallized protrusion was 35 nm. The Intensity distribution of the optical near-field at the apex of the probe was measured by scanning another probe across the apex, and it was observed that strong optical near-field was generated at the apex of the metallized protrusion. The width of the intensity distribution was 150 nm including instrumental resolution. Probes with spherical and ellipsoidal metallized protrusion were also fabricated, by which enhancement of the optical near-field is expected due to localized plasmon excitation.  相似文献   
4.
Liquefaction of tar from oil distillation was studied under sub- and supercritical water conditions using a batch reactor at 623 and 673 K and 25-40 MPa. The reaction scheme for tar liquefaction was determined as follows: the liquefaction process of tar occurs first and then intermediate chemical compounds are transformed into lighter molecular weight species. The effects of pressure and treatment time were combined into a single severity parameter that was used to monitor the conversion of tar. The main products from the liquefaction of tar were phenol (3.44 wt%), biphenyl (2.23 wt%), diphenylether (13.70 wt%) and diphenylmethane (1.30 wt%), respectively. Liquefaction of tar clearly increased with increasing water density at the same temperature reaction. It indicates that hydrolysis was important in the cleavage of the macromolecular structure of tar under sub- and supercritical conditions. Based on the results, this method could become an efficient method for tar liquefaction, producing high yields of valuable chemical intermediates.  相似文献   
5.
Journal of Radioanalytical and Nuclear Chemistry - Elemental isotopic ratios are measured in various research fields and provide useful information regarding age, origin, geological and biological...  相似文献   
6.
Recently, biodiesel has become more attractive as an alternative diesel fuel because it is renewable, biodegradable, non-toxic, and environmentally friendly. In this study, we have developed a new green process called ??hydrothermal electrolysis??, by which industrial wastewater can be converted to more value-added chemicals under high-temperature and high-pressure aqueous conditions. We prepared model biodiesel wastewater and carried out hydrothermal electrolysis experiments by using both a continuous flow reactor and a batch autoclave. Current efficiencies and the effects of reaction time and reaction temperature on the decomposition of biodiesel wastewater and removal of total organic carbon (TOC) were investigated under various operating conditions. It was found that conversions of both TOC and glycerol inside the model biodiesel wastewater increased with increasing applied current. With the autoclave, the maximum glycerol conversion was recorded as 83% by applying 1 A current at 250 °C, whereas with the flow reactor, 75% of glycerol was converted into gas and liquid products under the effect of 1 A current for 60 min at a reaction temperature of 280 °C. In the case of TOC removal from the liquid product solution, under identical conditions, it was found that 23 and 15.9% TOC conversions were achieved by the batch and continuous flow reactors, respectively.  相似文献   
7.
Bitumen is known as a mixture of organic liquids which has great importance to the chemical industry because of its great variety of special properties, which has favored the development of a wide field of applications. Bitumen has been mainly obtained as a residue of the petroleum refining process. Recently, the development of a process has been proposed to recover chemical resources from bitumen that can accomplish the destruction of the bitumen to produce harmless but useful compounds. Water at hydrothermal conditions is considered a promising and an environmentally acceptable solvent for a wide variety of chemical reactions such as organic syntheses and decomposition of hazardous waste into harmless compounds. In these works, water at supercritical conditions was applied as a solvent for upgrading of bitumen. The experiments were conducted at a temperature of 673 K and at various reaction pressures. The effect of pressure and reaction time on the decomposition process is presented. The chemical species in the aqueous products were analyzed by gas chromatography?Cmass spectrometry and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. Ultimate analysis of solid residue was also conducted using a CHN analyzer. The results showed that the amounts of bitumen-derived compounds formed increased with increasing reaction time. In addition, the study of bitumen model compounds by using a batch reactor was also conducted. Furthermore, this method could become an efficient method for upgrading bitumen into harmless compounds with a high yield of valuable chemical intermediates on the basis of the experimental results.  相似文献   
8.
In this study, we have demonstrated the synthesis and delamination of a rarely studied NiGa layered double hydroxide (LDH) system. Hydrothermal treatment under agitation conditions at 200 °C for 4 h resulted in the formation of highly crystalline NiGa LDHs in a shorter time than those synthesized without agitation. The LDH was delaminated into the individual nanosheets in formamide. The most significant finding in this study is the electrochemical behavior of interlayer ferricyanide anions intercalated with the layer-by-layer (LBL) assembly method. The morphology of LBL film with one layer is also monitored with atomic force microscopy. The cyclic voltammogram is similar to potassium metal hexacyanoferrate systems with its unique two-peak wave. Raman spectrum of the film revealed that the metal center of the interlayer cyano complex is in interaction with the Ni2+ of the host layer. It was concluded that the two-peak cyclic voltammogram of the film is a result of two different forms of the hexacyanoferrate in the interlayer.  相似文献   
9.
Individual polyethylene molecules have been imaged in the electron microscope. Preparative difficulties are overcome by the following procedures. (1) The polymer is dissolved in n-hexadecane at 130°C; (2) the solution is deposited on a cooled substrate by spraying in an atmosphere of cold nitrogen; (3) the deposited polymer molecules were shadowed by platinum. Molecular weights obtained are in good agreement with those from light scattering.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号