首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   17篇
  国内免费   4篇
化学   158篇
力学   2篇
数学   48篇
物理学   79篇
  2023年   2篇
  2021年   13篇
  2020年   10篇
  2019年   11篇
  2018年   8篇
  2017年   9篇
  2016年   13篇
  2015年   11篇
  2014年   8篇
  2013年   13篇
  2012年   19篇
  2011年   22篇
  2010年   12篇
  2009年   7篇
  2008年   24篇
  2007年   16篇
  2006年   18篇
  2005年   12篇
  2004年   16篇
  2003年   14篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1958年   2篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
1.
The synthesis of paracyclophane-based tetrathiafulvalene precursors is described in the context of the importance of these compounds in the field of material chemistry. Pseudo-geminal bis(1,3-dithia-2-thione) was synthesized via the corresponding 1,3-dithiol-2-ylium salt. The latter was obtained by a synthetic procedure that involves 4,15-bis(acetyl)[2.2]paracyclophane, a new compound of interest for many researchers.  相似文献   
2.
Artificial water channels mimicking natural aquaporins (AQPs) can be used for selective and fast transport of water. Here, we quantify the transport performances of peralkyl-carboxylate-pillar[5]arenes dimers in bilayer membranes. They can transport ≈107 water molecules/channel/second, within one order of magnitude of the transport rates of AQPs, rejecting Na+ and K+ cations. The dimers have a tubular structure, superposing pillar[5]arene pores of 5 Å diameter with twisted carboxy-phenyl pores of 2.8 Å diameter. This biomimetic platform, with variable pore dimensions within the same structure, offers size restriction reminiscent of natural proteins. It allows water molecules to selectively transit and prevents bigger hydrated cations from passing through the 2.8 Å pore. Molecular simulations prove that dimeric or multimeric honeycomb aggregates are stable in the membrane and form water pathways through the bilayer. Over time, a significant shift of the upper vs. lower layer occurs initiating new unexpected water permeation events through toroidal pores.  相似文献   
3.
Transmembrane protein channels are an important inspiration for the design of artificial ion channels. Their dipolar structure helps overcome the high energy barrier to selectively translocate water and ions sharing one pathway, across the cell membrane. Herein, we report that the amino-imidazole (Imu) amphiphiles self-assemble via multiple H-bonding to form stable artificial Cl-channels within lipid bilayers. The alignment of water/Cl wires influences the conduction of ions, envisioned to diffuse along the hydrophilic pathways; at acidic pH, Cl/H+ symport conducts along a partly protonated channel, while at basic pH, higher Cl/OH antiport translocate through a neutral channel configuration, which can be greatly activated by applying strong electric field. This voltage/pH regulated channel system represents an unexplored alternative for ion-pumping along artificial ion-channels, parallel to that of biology.  相似文献   
4.
Artificial water channels (AWCs) that selectively transport water and reject ions through bilayer membranes have potential to act as synthetic Aquaporins (AQPs). AWCs can have a similar osmotic permeability, better stability, with simpler manufacture on a larger-scale and have higher functional density and surface permeability when inserted into the membrane. Here, we report the screening of combinatorial libraries of symmetrical and unsymmetrical rim-functionalized PAs A – D that are able to transport ca. 107–108 water molecules/s/channel, which is within 1 order of magnitude of AQPs’ and show total ion and proton rejection. Among the four channels, C and D are 3–4 times more water permeable than A and B when inserted in bilayer membranes. The binary combinations of A – D with different molar ratios could be expressed as an independent (linear ABA ), a recessive (inhibition AB , AC , DB , ACA ), or a dominant (amplification, DBD ) behavior of the water net permeation events.  相似文献   
5.
A contractile dendritic motional device is reported where metal ions with biological importance—Ca2+ (the main regulatory and signaling species of the natural muscles), Mg2+, and Zn2+—initiate two kinds of motional functions. The first motional function is the metal‐ion‐induced contraction of a linear strand into a Z‐shaped dinuclear complex, and the second one is the change of the height of Z‐shaped complexes via transmetalation. By means of the pH‐dependent counterligand tren, the two motional features of the machine can depend on alternate additions of acid and base. An optical response is associated with the conversion of the linear form (which is yellow) into the metalated Z‐shaped one (which is red).  相似文献   
6.
A simple, environmentally friendly, and sensitive dispersive liquid–liquid microextraction based on solidification of floating organic droplet for the extraction of four acidic nonsteroidal anti‐inflammatory drugs (ketoprofen, naproxen, ibuprofen, and diclofenac) from wastewater samples subsequent by high‐performance liquid chromatography analysis was developed. The influence of extraction parameters such as pH, the effect of solution ionic strength, type of extraction solvent, disperser solvent, and extraction solvent volume were studied. High enrichment factors (283–302) were obtained through the developed method. The method provides good linearity (r > 0.999) in a concentration range of 1–100 μg/L, good intra‐ and inter‐day precision (relative standard deviation < 7%) and low limits of quantification. The relative recoveries of the selected compounds were situated over 80% both in synthetic and real water samples. The developed method has been successfully applied for the analysis of the selected compounds in wastewater samples.  相似文献   
7.
Natural Aquaporin (AQP) channels are efficient water translocating proteins, rejecting ions. Inspired by this masterpiece of nature, Artificial Water Channels (AWCs) with controlled functional structures, can be potentially used to mimic the AQPs to a certain extent, offering flexible avenues toward biomimetic membranes for water purification. The objective of this paper is to trace the historical development and significant advancements of current reported AWCs. Meanwhile, we attempt to reveal important structural insights and supramolecular self-assembly principles governing the selective water transport mechanisms, toward innovative AWC-based biomimetic membranes for desalination.  相似文献   
8.
As a consequence of the static Jahn-Teller effect of the 5E ground state of MnIII in cubic structures with octahedral parent geometries, their octahedral coordination spheres become distorted. In the case of six fluorido ligands, [MnF6]3− anions with two longer and four shorter Mn−F bonds making elongated octahedra are usually observed. Herein, we report the synthesis of the compound K3[MnF6] through a high-temperature approach and its crystallization by a high-pressure/high-temperature route. The main structural motifs are two quasi-isolated, octahedron-like [MnF6]3− anions of quite different nature compared to that met in ideal octahedral MnIII Jahn-Teller systems. Owing to the internal electric field of Ci symmetry dominated by the next-neighbour K+ ions acting on the MnIII sites, both sites, the pseudo-rhombic (site 1) and the pseudo-tetragonally elongated (site 2) [MnF6]3− anions are present in K3[MnF6]. The compound was characterized by single-crystal and powder X-ray diffraction, and magnetometry as well as by FTIR, Raman, and ligand field spectroscopy. A theoretical interpretation of the electronic structure and molecular geometry of the two Mn sites in the lattice is given by using a vibronic coupling model with parameters adjusted from multireference ab-initio cluster calculations.  相似文献   
9.
The evolution of different antimicrobial drugs in terrestrial, microgravity and hypergravity conditions is presented within this review, in connection with their implementation during human space exploration. Drug stability is of utmost importance for applications in outer space. Instabilities may be radiation-induced or micro-/hypergravity produced. The antimicrobial agents used in space may have diminished effects not only due to the microgravity-induced weakened immune response of astronauts, but also due to the gravity and radiation-altered pathogens. In this context, the paper provides schemes and procedures to find reliable ways of fighting multiple drug resistance acquired by microorganisms. It shows that the role of multipurpose medicines modified at the molecular scale by optical methods in long-term space missions should be considered in more detail. Solutions to maintain drug stability, even in extreme environmental conditions, are also discussed, such as those that would be encountered during long-duration space exploratory missions. While the microgravity conditions may not be avoided in space, the suggested approaches deal with the radiation-induced modifications in humans, bacteria and medicines onboard, which may be fought by novel pharmaceutical formulation strategies along with radioprotective packaging and storage.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号